Chapter 1 (Linear Equations in Linear Algebra): Vector equations (向量方程)

本文探讨了线性代数的基本概念,包括向量、矩阵、线性组合及生成集的概念,阐述了向量在二维和三维空间中的几何描述,并通过实例说明了线性组合在解决实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为《Linear algebra and its applications》的读书笔记

Vectors in R 2 \R^2 R2

  • A matrix with only one column is called a column vector (列向量), or simply a vector (向量).
    w = [ w 1 w 2 ] \boldsymbol w=\begin{bmatrix}w_1\\w_2\end{bmatrix} w=[w1w2]where w 1 w_1 w1 and w 2 w_2 w2 are any real numbers.
  • The set of all vectors with two entries is denoted by R 2 \mathbb{R}^2 R2(read “r-two”). The R \mathbb{R} R stands for the real numbers that appear as entries in the vectors, and the exponent 2 indicates that each vector contains two entries. Vectors in R 2 \mathbb{R}^2 R2 are ordered pairs of real numbers. (实数的有序对)

Sometimes, for convenience (and also to save space), this text may write a column vector in the form ( w 1 , w 2 ) (w_1, w_2) (w1,w2). In this case, the parentheses and the comma distinguish the vector ( w 1 , w 2 ) (w_1, w_2) (w1,w2) from the 1 × 2 1\times 2 1×2 row matrix [ w 1   w 2 ] [w_1\ w_2] [w1 w2], written with brackets and no comma.


scalar multiple (标量乘法 / 数乘):
在这里插入图片描述

Geometric Descriptions of R 2 \R^2 R2

  • Consider a rectangular coordinate system (直角坐标系) in the plane. We can identify a geometric point ( a , b ) (a, b) (a,b) with the column vector [ a b ] \begin{bmatrix}a\\b\end{bmatrix} [ab].
    在这里插入图片描述
  • The sum of two vectors has a useful geometric representation. The following rule can be verified by analytic geometry. (解析几何)
    在这里插入图片描述
    在这里插入图片描述

For simplicity of notation, a vector such as u + ( − 1 ) v \boldsymbol u +(-1)\boldsymbol v u+(1)v is often written as u − v \boldsymbol u -\boldsymbol v uv.

Vectors in R n \mathbb{R}^n Rn

u = [ u 1 u 2 . . . u n ] \boldsymbol u=\begin{bmatrix}u_1\\u_2\\...\\u_n\end{bmatrix} u=u1u2...un

  • The vector whose entries are all zero is called the zero vector and is denoted by 0. (The number of entries in 0 will be clear from the context.)

Linear Combinations

线性组合

Linear Combinations

y = c 1 v 1 + . . . + c p v p y=c_1\boldsymbol v_1+...+c_p\boldsymbol v_p y=c1v1+...+cpvpis called a linear combination of v 1 , . . . , v p \boldsymbol v_1,..., \boldsymbol v_p v1,...,vp with weights c 1 , . . . , c p c_1,...,c_p c1,...,cp.

The weights in a linear combination can be any real numbers

线性组合与“存在”问题的联系

  • The next example connects a problem about linear combinations to the fundamental existence question studied in Sections 1.1 and 1.2.

EXAMPLE 4

Let a 1 = [ 1 − 2 − 5 ] ,   a 2 = [ 2 5 6 ] \boldsymbol a_1=\begin{bmatrix}1\\-2\\-5\end{bmatrix},\ \boldsymbol a_2=\begin{bmatrix}2\\5\\6\end{bmatrix} a1=125, a2=256, and b = [ 7 4 − 3 ] \boldsymbol b=\begin{bmatrix}7\\4\\-3\end{bmatrix} b=743. Determine whether b \boldsymbol b b can be generated (or written) as a linear combination of a 1 \boldsymbol a_1 a1 and a 2 \boldsymbol a_2 a2.

SOLUTION
在这里插入图片描述在这里插入图片描述

  • To solve this system, row reduce the augmented matrix of the system as follows:
    在这里插入图片描述

∼ \sim 表示行等价

  • Hence b \boldsymbol b b is a linear combination of a 1 \boldsymbol a_1 a1 and a 2 \boldsymbol a_2 a2, with weights x 1 = 3 x_1 = 3 x1=3 and x 2 = 2 x_2 = 2 x2=2.

  • Observe in Example 5 that the original vectors a 1 \boldsymbol a_1 a1, a 2 \boldsymbol a_2 a2, and b \boldsymbol b b are the columns of the augmented matrix that we row reduced:
    在这里插入图片描述For brevity, write this matrix in a way that identifies its columns—namely,
    [   a 1     a 2     b   ] [\ \boldsymbol a_1\ \ \ \boldsymbol a_2\ \ \ \boldsymbol b\ ] [ a1   a2   b ]

  • The discussion above is easily modified to establish the following fundamental fact:
    在这里插入图片描述

生成集 Span \text {Span} Span

  • One of the key ideas in linear algebra is to study the set of all vectors that can be generated or written as a linear combination of a fixed set { v 1 , . . . , v p } \{\boldsymbol v_1,...,\boldsymbol v_p \} {v1,...,vp} of vectors.

在这里插入图片描述

  • Asking whether a vector b \boldsymbol b b is in S p a n { v 1 , . . . , v p } Span\{\boldsymbol v_1,...,\boldsymbol v_p \} Span{v1,...,vp} (生成集) amounts to asking whether the vector equation
    x 1 v 1 + x 2 v 2 + . . . + x p v p = b x_1\boldsymbol v_1+x_2\boldsymbol v_2+...+x_p\boldsymbol v_p=\boldsymbol b x1v1+x2v2+...+xpvp=bhas a solution, or, equivalently, asking whether the linear system with augmented matrix [   v 1     . . .     v p     b   ] [\ \boldsymbol v_1\ \ \ ...\ \ \ \boldsymbol v_p\ \ \ \boldsymbol b\ ] [ v1   ...   vp   b ] has a solution.

Span { v 1 , . . . , v p } \{\boldsymbol v_1,...,\boldsymbol v_p \} {v1,...,vp} 一定包含 0 \boldsymbol 0 0


A Geometric Description of Span { v } \{\boldsymbol v\} {v} and Span { u , v } \{\boldsymbol u,\boldsymbol v \} {u,v}

  • Let v \boldsymbol v v and u \boldsymbol u u be a nonzero vector in R 3 \mathbb{R}^3 R3, with v \boldsymbol v v not a multiple of u \boldsymbol u u
    在这里插入图片描述
    在这里插入图片描述
  • If v \boldsymbol v v is a multiple of u \boldsymbol u u, then Span { u , v } \{\boldsymbol u,\boldsymbol v \} {u,v} can be just a line through the origin. In fact, Span { u , v } \{\boldsymbol u,\boldsymbol v \} {u,v} can also be just the origin itself.

EXAMPLE 5

Let a 1 = [ 1 4 − 2 ] ,   a 2 = [ − 2 − 3 7 ] \boldsymbol a_1=\begin{bmatrix}1\\4\\-2\end{bmatrix},\ \boldsymbol a_2=\begin{bmatrix}-2\\-3\\7\end{bmatrix} a1=142, a2=237, and b = [ 4 1 h ] \boldsymbol b=\begin{bmatrix}4\\1\\h\end{bmatrix} b=41h For what value(s) of h h h is b \boldsymbol b b in the plane spanned by a 1 \boldsymbol a_1 a1 and a 2 \boldsymbol a_2 a2?

SOLUTION

  • When the linear system [   a 1     a 2     b   ] [\ \boldsymbol a_1\ \ \ \boldsymbol a_2\ \ \ \boldsymbol b\ ] [ a1   a2   b ] is consistent.

EXAMPLE 6

A thin triangular plate of uniform density and thickness has vertices at v 1 = ( 0 , 1 ) \boldsymbol v_1 = (0, 1) v1=(0,1), v 2 = ( 8 , 1 ) \boldsymbol v_2 = (8, 1) v2=(8,1), and v 3 = ( 2 , 4 ) \boldsymbol v_3 = (2, 4) v3=(2,4). This “balance point” of the plate coincides with the center of mass of a system consisting of three 1-gram point masses located at the vertices of the plate. Determine how to distribute a mass of 6 g at the three vertices of the plate to move the balance point of the plate to (2,2).

SOLUTION
在这里插入图片描述

  • The condition w 1 + w 2 + w 3 = 6 w_1 + w_2 + w_3 = 6 w1+w2+w3=6 and the vector equation above combine to produce a system of three equations whose augmented matrix is shown below, along with a sequence of row operations:
    在这里插入图片描述
  • Answer: Add 3.5 g at (0, 1), add .5 g at (8, 1), and add 2 g at (2, 4).

Linear Combinations in Applications

  • The final example shows how scalar multiples and linear combinations can arise when a quantity (量) such as “cost” is broken down into several categories.

EXAMPLE 7

A company manufactures two products. For $1.00 worth of product B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead (管理费用). For $1.00 worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on overhead. Let
b = [ . 45 . 25 . 15 ] ,   c = [ . 40 . 30 . 15 ] \boldsymbol b=\begin{bmatrix}.45\\.25\\.15\end{bmatrix},\ \boldsymbol c=\begin{bmatrix}.40\\.30\\.15\end{bmatrix} b=.45.25.15, c=.40.30.15Then b \boldsymbol b b and c \boldsymbol c c represent the “costs per dollar of income” for the two products. Suppose the company wishes to manufacture x 1 x_1 x1 dollars worth of product B and x 2 x_2 x2 dollars worth of product C. Give a vector that describes the various costs the company will have (for materials, labor, and overhead).

SOLUTION
x 1 b + x 2 c x_1\boldsymbol b+x_2\boldsymbol c x1b+x2c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值