一、系统架构设计:从传感器到控制指令的完整链路
1.1 多模态传感器融合方案
采用摄像头+雷达+IMU的多传感器融合方案,通过卡尔曼滤波实现时空对齐:
import numpy as np
from scipy.linalg import block_diag
class SensorFusion:
def __init__(self):
self.Q = np.diag([0.1, 0.1, 0.05, 0.1]) # 过程噪声协方差
self.R = np.diag([1.0, 1.0, 0.5]) # 测量噪声协方差
self.P = np.eye(6) # 初始估计误差协方差
self.x = np.zeros((6, 1)) # 初始状态向量
def update(self, camera_data, lidar_data, imu_data):
# 状态转移矩阵(简化版)
F = block_diag(np.eye(3), np.eye(3))
# 观测矩阵(根据传感器配置调整)
H = np.array([[1,0,0,0,0,0],
[0,1,0,0,0,0],
[0,0,1,0,0,0]])
# 卡尔曼滤波更新逻辑
# ...(完整实现见配套代码)
1.2 神经网络架构设计
基于Comma.ai的PilotNet改进架构,采用3D卷积处理时空特征:
import torch
import torch.nn as nn
class End2EndNet(nn.Module):
def __init__(self):
super().__init__()
self.conv3d = nn.Sequential(
nn.Conv3d(3, 24, (3,3,3), stride=(1,2,2)),
nn.ReLU(),
nn.MaxPool3d((1,2,2)),
# ...(完整层定义见配套代码)
)
self.lstm = nn.LSTM(input_size=512, hidden_size=256, num_layers=2)
self.control_head = nn.Sequential(
nn.Linear(256, 128),
nn.Tanh(),
nn.Linear(128, 3) # 输出转向角、油门、刹车
)
def forward(self, x):
# x shape: (batch, seq_len, channels, H, W)
b, seq, c, h, w = x.shape
x = x.view(b*seq, c, h, w)
x = self.conv3d(x)
x = x.view(

最低0.47元/天 解锁文章
1616

被折叠的 条评论
为什么被折叠?



