The Circumference of the Circle

本文介绍了一种通过三个非共线点的笛卡尔坐标计算唯一相交圆周长的方法。利用正余弦定理计算出直径后,再求得圆的周长。

The Circumference of the Circle

Describe

To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don’t?

You are given the cartesian coordinates of three non-collinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three points.
Input
The input will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.
Output
For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.
Sample Input

0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0

Sample Output

3.14
4.44
6.28
31.42
62.83
632.24
3141592.65

利用正余弦定理推出直径d=2R=asinA=bsinB=csinCd=2R=asinA=bsinB=csinC,计算即可。

#include<iostream>
#include<cmath>
#include<cstdio>
#define pi 3.141592653589793

using namespace std;

double len(double a,double b,double c,double d)
{
    return sqrt((a-b)*(a-b)+(c-d)*(c-d));
}

int main()
{
    double x1,x2,x3,y1,y2,y3;
    while(cin>>x1>>y1>>x2>>y2>>x3>>y3)
    {
        double a=len(x1,x2,y1,y2),b=len(x1,x3,y1,y3),c=len(x2,x3,y2,y3);
        double cosa=(b*b+c*c-a*a)/(2*b*c);
        double sina=sqrt(1-cosa*cosa);
        double d=a/sina;
        printf("%.2f\n",pi*d);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值