2242 The Circumference of the Circle

本文介绍了一种计算由三个非共线点确定的三角形外接圆周长的方法,利用海伦公式和正弦定理推导出周长的计算公式,并提供了一个C++实现示例。

Description

To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don’t?

You are given the cartesian coordinates of three non-collinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three points.

Input

The input will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.

Output

For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.

Sample Input

0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0

Sample Output

3.14
4.44
6.28
31.42
62.83
632.24
3141592.65

Source

Ulm Local 1996


求三角形外接圆周长:

设三角形三边长分别为a,b,c,半周长为p,面积为s;外接圆半径为r,周长为cir

p=(a+b+c)/2

海伦公式:s=(p(pa)(pb)(pc)

正弦定理:c/sinC=2r

又因为:s=(absinC)/2

所以周长:
cir=2pir=pic/sin=(piabc)/(2s)

=(piabc)/(2(p(pa)(pb)(pc))


/*求三角形外接圆周长*/
#include<iostream>
#include<iomanip>
#include<math.h>

using namespace std;

#define PI 3.141592653589793

double length(double x1,double y1,double x2,double y2)
{
    return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
}

int main()
{
    double x1, y1, x2, y2, x3, y3;
    double cir = 0;
    while (cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3)
    {
        double a = length(x1, y1, x2, y2);
        double b = length(x1, y1, x3, y3);
        double c = length(x2, y2, x3, y3);
        double p = (a + b + c) / 2;
        double s = sqrt(p*(p - a)*(p - b)*(p - c));
        cir = PI*a*b*c / (2 * s);
        cout << fixed << setprecision(2) << cir << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值