Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length
is 4
. Note that there may be more than one LIS combination, it is only necessary
for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
题意:求数组的最长递增子序列
思路:dp[i] 记录以nums[i]结尾的递增序列的长度,初始化dp[0] = 1; 则dp[i+1]则是比较nums[i+1] 与之前所有的nums[j]的值,并根据dp[j]更新dp[i+1],没有比nums[i+1]小的则dp[i+1] = 1,所以可以先初始化所有的dp[i]=1。复杂度为O(n^2)。动态规划+binary search可是复杂度降为O(nlogn)。
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int m = nums.size();
if (m == 0)
return 0;
vector<int> dp(m, 1);
int maxNum = 1;
for (int i = 1; i < m; i++){
for (int j = i - 1; j >= 0; j--){
if (nums[i] > nums[j]){
dp[i] = max(dp[i], dp[j]+1);
}
}
if (dp[i] > maxNum)
maxNum = dp[i];
}
return maxNum;
}
};