Longest Increasing Subsequence

本文介绍了一种求解最长递增子序列长度的问题,并提供了一个基于动态规划的解决方案。该算法的时间复杂度为O(n^2),同时讨论了如何进一步优化到O(n log n)的复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int size = nums.size();
        if (size < 2)
            return size;

        int *dp = new int[size];
        for (int i = 0; i < size; i++) {
            dp[i] = 1;
        }
        int res = 0;
        for (int i = 1; i < size; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            res = max(res, dp[i]);
        }
        delete dp;
        return res;
    }
};

 

转载于:https://www.cnblogs.com/wxquare/p/5938780.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值