格林函数一阶常微分方程方法介绍

从一个物理问题入手:

假设一个物体静止在具有正比于速度的粘滞阻力的地面,t时刻突然作用一个冲击,求物体的速度,这个问题可以用以下方程描述

m\frac{\mathrm{dv} }{\mathrm{d} t}+\alpha v=\delta (t-t')

在时刻t'之后,v的方程是

v=\frac{1}{m}e^{-\frac{\alpha }{m}(t-t')}

这个解叫作系统的格林函数,记作G(t,t')

有了这个解,结合体系的线性性,可以得出对于任意方程

m\frac{\mathrm{dv} }{\mathrm{d} t}+\alpha v=F(t)

系统的解可以形式上写为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值