albumentation
https://albumentations.ai/docs/#getting-started-with-albumentations
minu area和minu visibility参数控制相册在增强后大小发生变化时应该对增强的边界框执行的操作。如果应用空间增强(例如,裁剪图像的一部分或调整图像大小),边界框的大小可能会更改
minu area是以像素为单位的值。如果扩展后边界框的面积小于最小面积,则Albumentations将删除该框。因此,返回的扩展边界框列表将不包含该边界框
minu visibility是介于0和1之间的值。如果增强后的边界框面积与增强前的边界框面积之比小于最小可见性,则Albumentations将删除该框。因此,如果增强过程剪切了大部分边界框,那么该框将不会出现在返回的增强边界框列表中
label_fields=['class_labels', 'class_categories']
class_labels 一个类别中的细分,例如class_categories 是动物,class_labels 则可以是狗、猫、牛等
集成 albumentation 及 yoloV5 中的mosaic mixup
class LoadImagesAndLabels_1(Dataset): # for training/testing
def __init__(self,
path,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
image_weights=False,
cache_images=False,
single_cls=False,
stride=32,
pad=0.0,
prefix=''):
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride
self.path = path
self.transform = A.Compose([
# ---------------------
A.RandomBrightness(limit=2, p=0.5), # 随机调整亮度
A.RandomBrightnessContrast(p=0.2), # 随机调整亮度
A.RandomContrast(limit=2.3, p=0.5), # 随机对比度
# A.RGBShift(r_shift_limit=133, g_shift_limit=146, b_shift_limit=26, p=0.5), # 色度偏移
# A.RandomGamma(gamma_limit=148, p=0.5), # 伽马变换
# A.HueSaturationValue(hue_shift_limit=20, sat_shift_limit=20, val_shift_limit=27, p=0.5), # HSV偏移
# A.JpegCompression(quality_lower=80, quality_upper=100, p=0.5), # 图片压缩
# A.Blur(blur_limit=7, p=1), # 模糊处理
# A.MedianBlur(blur_limit=3, p=0.1), # 中值模糊
# A.MotionBlur(p=0.2), # 动态模糊
# A.GaussianBlur(blur_limit=7, p=1), # 高斯模糊
# A.GlassBlur(sigma=0.7, max_delta=4), # 棱镜模糊
# A.Cutout(num_holes=8, max_h_size=8, max_w_size=8), # 挖小洞
# A.RandomSnow(p=1), # 加雪花
# A.RandomRain(p=1), # 加雨滴
# A.RandomFog(p=1), # 加雾
# A.RandomSunFlare(p=1), # 加阳光
# A.RandomShadow(p=1), # 加阴影
# A.ISONoise(p=1), # 传感器噪声
# A.IAAAdditiveGaussianNoise(p=1), # 高斯噪声
# A.MultiplicativeNoise(p=1), # 多层偏移噪声
# A.IAAEmboss(p=1), # 浮雕
# A.IAASuperpixels(p=1), # 超像素
# A.IAASharpen(p=1), # 锐化
# # ---------------------
# A.RandomCrop(width=450, height=450),
# A.CenterCrop(height=480, width=480, p=0.5), # 中心裁剪
# # ---------------------
# A.Rotate(limit=89, p=0.5), # 随机旋转
# A.VerticalFlip(p=0.5), # 垂直翻转
# A.HorizontalFlip(p=0.5), # 水平翻转
# A.RandomRotate90(p=0.5), # 随机90度旋转
# A.ShiftScaleRotate(shift_limit=0.8, scale_limit=1, rotate_limit=118, p=0.5), # 旋转平移缩放
# A.IAAPerspective(p=1), # 透视变换
# # ---------------------
# A.ElasticTransform(alpha=155, sigma=210, alpha_affine=157, p=0.5), # 弹性变形, 文本图像分析最好的变形
# A.OpticalDistortion(distort_limit=0.25, shift_limit=0.2, p=0.5), # 光学变形,
# A.GridDistortion(num_steps=5, distort_limit=0.3, p=1), # 栅格变形
# A.CLAHE(clip_limit=4.0, tile_grid_size=(8, 8)), # 自适应直方图均衡化
], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
try:
f = [] # image files
for p in path if isinstance(path, list) else [path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
# f = list(p.rglob('**/*.*')) # pathlib
elif p.is_file(): # file
with open(p, 'r') as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise Exception(f'{prefix}{p} does not exist')
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
assert self.img_files, f'{prefix}No images found'
except Exception as e:
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
# Check cache
self.label_files = img2label_paths(self.img_files) # labels
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
if cache_path.is_file():
cache, exists = torch.load(cache_path), True # load
if cache['hash'] != get_hash(self.label_files + self.img_files): # changed
cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
else:
cache, exists = self.cache_labels(cache_path, prefix), False # cache
# Display cache
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
if exists:
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
# Read cache
cache.pop('hash') # remove hash
cache.pop('version') # remove version
labels, shapes, self.segments = zip(*cache.values())
self.labels = list(labels)
self.shapes = np.array(shapes, dtype=np.float64)
self.img_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
if single_cls:
for x in self.labels:
x[:, 0] = 0
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
self.batch = bi # batch index of image
self.n = n
self.indices = range(n)
# Rectangular Training
if self.rect:
# Sort by aspect ratio
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
self.imgs = [None] * n
if cache_images:
gb = 0 # Gigabytes of cached images
self.img_hw0, self.img_hw = [None] * n, [None] * n
results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
gb += self.imgs[i].nbytes
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
pbar.close()
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
# Cache dataset labels, check images and read shapes
x = {} # dict
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, corrupt
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
with Pool(num_threads) as pool:
pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
desc=desc, total=len(self.img_files))
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f in pbar:
nm += nm_f
nf += nf_f
ne += ne_f
nc += nc_f
if im_file:
x[im_file] = [l, shape, segments]
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
pbar.close()
if nf == 0:
logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
x['hash'] = get_hash(self.label_files + self.img_files)
x['results'] = nf, nm, ne, nc, len(self.img_files)
x['version'] = 0.2 # cache version
try:
torch.save(x, path) # save cache for next time
logging.info(f'{prefix}New cache created: {path}')
except Exception as e:
logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
return x
def __len__(self):
return len(self.img_files)
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
index = self.indices[index] # linear, shuffled, or image_weights
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp['mosaic']
if mosaic:
# Load mosaic
# mosaic 方法集成投射投影变换,裁剪等,使用时后续不用再做这方面的增强
img, labels = load_mosaic(self, index)
shapes = None
# MixUp https://arxiv.org/pdf/1710.09412.pdf
if random.random() < hyp['mixup']:
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
img = (img * r + img2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
if labels.size: # normalized xywh to pixel xyxy format, 对应pascal_voc标注类型
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
# 图像增强
if self.augment:
bboxes = labels[:, 1:]
class_labels = labels[:, 0]
transformed = self.transform(image=img, bboxes=bboxes, class_labels=class_labels)
img = transformed['image']
transformed_bboxes = transformed['bboxes']
transformed_class_labels = transformed['class_labels']
labels = np.zeros((len(transformed_class_labels), 5))
labels[:, 0] = transformed_class_labels
labels[:, 1:] = transformed_bboxes
nL = len(labels) # number of labels
if nL:
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
@staticmethod
def collate_fn4(batch):
img, label, path, shapes = zip(*batch) # transposed
n = len(shapes) // 4
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
i *= 4
if random.random() < 0.5:
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
0].type(img[i].type())
l = label[i]
else:
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
img4.append(im)
label4.append(l)
for i, l in enumerate(label4):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4