Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
分析:题目的意思是整个过程中最多只能买一只股票然后卖出,也可以不买股票。也就是我们要找到一对最低价和最高价,最低价在最高价前面,以最低价买入股票,以最高价卖出股票。
算法1:
设dp[i]是[0,1,2...i]区间的最大利润,则该问题的一维动态规划方程如下
dp[i+1] = max{dp[i], prices[i+1] - minprices} ,minprices是区间[0,1,2...,i]内的最低价格
我们要求解的最大利润 = max{dp[0], dp[1], dp[2], ..., dp[n-1]}
需要注意的一点是,代码中并没有开辟一维动态数组,整个过程只用了常数量级的空间。
class Solution {
public:
int maxProfit(vector<int> &prices) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int len = prices.size();
if(len <= 1)return 0;
int res = prices[1] - prices[0], minprice = prices[0];
for(int i = 2; i < len; i++)
{
minprice = min(prices[i-1], minprice);
if(res < prices[i] - minprice)
res = prices[i] - minprice;
}
if(res < 0)return 0;
else return res;
}
};
算法2:按照股票差价构成新数组 prices[1]-prices[0], prices[2]-prices[1], prices[3]-prices[2], ..., prices[n-1]-prices[n-2]。求新数组的最大子段和就是我们求得最大利润,假设最大子段和是从新数组第
i 到第 j 项,那么子段和= prices[j]-prices[j-1]+prices[j-1]-prices[j-2]+...+prices[i]-prices[i-1] = prices[j]-prices[i-1], 即prices[j]是最大价格,prices[i-1]是最小价格,且他们满足前后顺序关系。代码如下:class Solution {
public:
int maxProfit(vector<int> &prices) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int len = prices.size();
if(len <= 1)return 0;
int res = 0, currsum = 0;
for(int i = 1; i < len; i++)
{
if(currsum <= 0)
currsum = prices[i] - prices[i-1];
else
currsum += prices[i] - prices[i-1];
if(currsum > res)
res = currsum;
}
return res;
}
};
15.9.15更新
-------------------
I限制了只能买卖一次。于是要尽可能在最低点买入最高点抛出。这里的一个隐含的限制是抛出的时间必须在买入的时间之后。所以找整个数组的最大最小值之差的方法未必有效,因为很可能最大值出现在最小值之前。但是可以利用类似思路,在扫描数组的同时来更新一个当前最小值minPrice。这样能保证当扫到i时,minPrices必然是i之前的最小值。当扫到i时:
如果prices[i] < minPrice,则更新minPrice = prices[i]。并且该天不应该卖出。
如果prices[i] >= minPrice,则该天可能是最好的卖出时间,计算prices[i] - minPrice,并与当前的单笔最大利润比较更新。
class Solution {
public:
int maxProfit(vector<int> &prices) {
if(prices.empty()) return 0;
int ret = 0, minPrice = prices[0];
for(int i=1; i<prices.size(); i++) {
if(prices[i]<minPrice)
minPrice = prices[i];
else
ret = max(prices[i]-minPrice,ret);
}
return ret;
}
};