Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
分析:从最下面一层开始往上计算,设dp[i][j]是以第i层第j个元素为起点的最小路径和,动态规划方程如下
dp[i][j] = value[i][j] + max{dp[i-1][j], dp[i-1][j+1]}
因为每一层之和它下一层的值有关,因此只需要一个一维数组保存下层的值,代码如下:
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
const int rows = triangle.size();
int dp[rows];
for(int i = 0; i < rows; i++)
dp[i] = triangle[rows-1][i];
for(int i = rows-2; i >= 0; i--)
for(int j = 0; j <= i; j++)
dp[j] = triangle[i][j] + min(dp[j], dp[j+1]);
return dp[0];
}
};
9.14更新
--------------------
此题很有意思,用滚动数组就可以。