1,从git上拉取R-FCN:
git clone https:
//github
.com
/Orpine/py-R-FCN
.git
2,进入py-R-FCN根目录,拉取caffe:
cd py-R-FCN
git clone https:
//github
.com
/Microsoft/caffe
.git
3,替换成原始caffe的cudnn:
cp
caffe
/include/caffe/util/cudnn
.hpp desktop/py-R-FCN
/caffe/include/caffe/util/cudnn
.hpp
cp
caffe
/src/caffe/layers/cudnn_* desktop/py-R-FCN/caffe/src/caffe/layers/
cp
caffe
/include/caffe/layers/cudnn_* desktop/py-R-FCN/caffe/include/caffe/layers/
4,编译Cython:
cd py-R-FCN/lib
make
5,进入py-R-FCN/caffe,替换成自己的Makefile和Makefile.config。然后编译:
make -j4
make pycaffe
6,运行demo,把
resnet50_rfcn_final.caffemodel和resnet101_rfcn_final.caffemodel放在py-R-FCN
/data/rfcn_models/,然后:
cd py-R-FCN
.
/tools/demo_rfcn
.py --net ResNet-50
7,若需要训练自己的数据集,需先修改网络结构:
先修改 py-R-FCN/models/pascal_voc/ResNet-50/rfcn_end2end 下的 5个网络结构文件(tobe定位)
再修改 py-R-FCN/lib/datasets 下的pascal _voc.py (tobe定位)
然后在py-R-FCN下运行 : ./experiments/scripts/rfcn_end2end_ohem.sh 0 ResNet-50 pascal_voc