等几何分析中的矩阵操作与应用
1. 基函数二阶导数计算
在等几何分析中,基函数的导数计算是重要的基础操作。以下是计算基函数二阶导数并进行验证的代码:
d2N = diff (dN, u);
d2N = simplify(d2N); % d2N(u)/du2
fprintf ('2nd Derivative of Basis Functions,d2N(u) \n');
disp(d2N); % finished
% Validate sum(N) == 1, derivative sums ==0
disp ('Sum of span basis functions, all must = 1');
disp (simplify (sum (N))); % == 1 ?
disp ('Sum of span first derivatives, all must = 0');
disp (simplify (sum (dN))); % == 0 ?
disp ('Sum of span second derivatives, all must = 0');
disp (simplify (sum (d2N))); % == 0 ?
disp ('ranges ');
disp(range);
disp ('Exit symbolic_N_bases');
这段代码首先计算基函数的二阶导数 d2N ,并使用 simplify 函数进行简化。然后,验证基函数及其一阶、二阶导数的和是否满足特定条件,即基函数之和为 1,一阶导数之和为 0,二阶导数
超级会员免费看
订阅专栏 解锁全文
1578

被折叠的 条评论
为什么被折叠?



