贫困预测软件

Last year the United Nations set a goal of eliminating extreme poverty worldwide by 2030. That’s an audacious target. One of the first steps—figuring out where the most impoverished people live—has proved surprisingly difficult. Conducting economic surveys in poor or conflict-prone countries can be expensive and dangerous. Researchers have tried to work around this limitation by searching nighttime satellite images for unusually dark areas. “Places lit up at night are generally better off,” explains Marshall Burke, an assistant professor of earth science systems at Stanford University. But this method is imperfect, especially for differentiating between grades 

of poverty. From space, at night, mild and extreme poverty look the same—dark.

  Burke and his team at Stanford think they have found a way to improve the study of satellite images using machine learning. The researchers trained image-analysis software on both daytime and nighttime satellite imagery for five African nations. By combining both sets of data, the computer “learned” which daytime features (roads, urban areas, agricultural lands) were correlated with different levels of night-lights brightness. “The night lights area tool to figure out what’s important in the daytime imagery,” Burke says.

  Once the training was complete, the software could spot impoverished areas simply by looking at daytime satellite images. When the researchers compared the results with survey data from the five African countries, they found that their method outperformed other nontraditional poverty-predicting tools, including the night-lights model. Governments and nonprofits could use the tool to determine whom to target in a cash-transfer program, for example,or to evaluate how well a certain antipoverty policy works. The researchers have plans to collaborate with the World Bank to chart out poverty in places such as Somalia. Next, Burke and his team want to use their new technique to create an Africa-wide map.



内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值