数据预处理第6讲:正态变换

本文探讨了正态变换在数据预处理中的应用,特别是Box-Cox和Yeo-Johnson变换。这些变换能够将不同分布的数据转换为正态分布。内容包括对六种不同分布的实验,比较分析显示Box-Cox变换在某些分布上优于分位数变换。考虑到小样本可能会导致分位数变换过度拟合,参数变换如Box-Cox和Yeo-Johnson在小样本中更为推荐。

论文合作、课题指导请联系QQ2279055353

Box-Cox and Yeo-Johnson变换可以将来自不同分布的数据映射到正态分布。下面的例子将这两种变换应用到6种不同的概率分布数据:Lognormal, Chi-squared, Weibull, Gaussian, Uniform, and Bimodal. 通过PowerTransformer类,成功地将上述分布的数据映射到正态分布。可视化变换前后的数据比较之,得到下列结论:

  • Box-Cox变换不支持负值的输入;
  • Box-Cox变换对于lognormal and chi-squared分布,表现好于Yeo-Johnson变换;

比较分析

使用QuantileTransformer类,我们与分位数变换对比。分位数变换在训练样本足够大的情况下,通常需要几千个样本,可以把任意分布的数据变换成正态分布。分位数变换是一种非参数方法,它的结果比参数变换,例如这里的Box-Cox and Yeo-Johnson变换,更难解释。在小样本下(几百个样本),分位数变换被证明是过度拟合的(overfitting), 因此,推荐使用参数变换。

程序代码

# Author: Eric Chang <ericchang2017@u.northwestern.edu>
#         Nicolas Hug <contact@nicolas-hug.com>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.preprocessing import PowerTransformer
from sklearn.preprocessing import QuantileTransformer
from sklearn.model_selection import train_test_split

print(__doc__)


N_SAMPLES = 1000
FONT_SIZE = 6
BINS = 30


rng = np.random.RandomState(304)
bc = PowerTransformer(method='box-cox')
yj = PowerTransformer(method='yeo-johnson')
# n_quantiles is set to the training set size rather than the default value
# to avoid a warning being raised by this example
qt = QuantileTransformer(n_quantiles=500, output_distribution='normal',
                         random_state=rng)
size = (N_SAMPLES, 1)


# lognormal distribution
X_lognormal = rng.lognormal(size=size)

# chi-squared distribution
df = 3
X_chisq = rng.chisquare(df=df, size=size)

# weibull distribution
a = 50
X_weibull = rng.weibull(a=a, size=size)

# gaussian distribution
loc = 100
X_gaussian = rng.normal(loc=loc, size=size)

# uniform distribution
X_uniform = rng.uniform(low=0, high=1, size=size)

# bimodal distribution
loc_a, loc_b = 100, 105
X_a, X_b = rng.normal(loc=loc_a, size=size), rng.normal(loc=loc_b, size=size)
X_bimodal = np.concatenate([X_a, X_b], axis=0)


# create plots
distributions = [
    ('Lognormal', X_lognormal),
    ('Chi-squared', X_chisq),
    ('Weibull', X_weibull),
    ('Gaussian', X_gaussian),
    ('Uniform', X_uniform),
    ('Bimodal', X_bimodal)
]

colors = ['#D81B60', '#0188FF', '#FFC107',
          '#B7A2FF', '#000000', '#2EC5AC']

fig, axes = plt.subplots(nrows=8, ncols=3, figsize=plt.figaspect(2))
axes = axes.flatten()
axes_idxs = [(0, 3, 6, 9), (1, 4, 7, 10), (2, 5, 8, 11), (12, 15, 18, 21),
             (13, 16, 19, 22), (14, 17, 20, 23)]
axes_list = [(axes[i], axes[j], axes[k], axes[l])
             for (i, j, k, l) in axes_idxs]


for distribution, color, axes in zip(distributions, colors, axes_list):
    name, X = distribution
    X_train, X_test = train_test_split(X, test_size=.5)

    # perform power transforms and quantile transform
    X_trans_bc = bc.fit(X_train).transform(X_test)
    lmbda_bc = round(bc.lambdas_[0], 2)
    X_trans_yj = yj.fit(X_train).transform(X_test)
    lmbda_yj = round(yj.lambdas_[0], 2)
    X_trans_qt = qt.fit(X_train).transform(X_test)

    ax_original, ax_bc, ax_yj, ax_qt = axes

    ax_original.hist(X_train, color=color, bins=BINS)
    ax_original.set_title(name, fontsize=FONT_SIZE)
    ax_original.tick_params(axis='both', which='major', labelsize=FONT_SIZE)

    for ax, X_trans, meth_name, lmbda in zip(
            (ax_bc, ax_yj, ax_qt),
            (X_trans_bc, X_trans_yj, X_trans_qt),
            ('Box-Cox', 'Yeo-Johnson', 'Quantile transform'),
            (lmbda_bc, lmbda_yj, None)):
        ax.hist(X_trans, color=color, bins=BINS)
        title = 'After {}'.format(meth_name)
        if lmbda is not None:
            title += r'\n$\lambda$ = {}'.format(lmbda)
        ax.set_title(title, fontsize=FONT_SIZE)
        ax.tick_params(axis='both', which='major', labelsize=FONT_SIZE)
        ax.set_xlim([-3.5, 3.5])
        
plt.tight_layout()
plt.show()

结果图示
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值