关于λ-optimal的初始化解算法在(元)启发式中的应用

本文介绍了λ-optimal算法在解决旅行推销员问题(TSP)时,如何作为有效的初始化解方法。通过对连续城市序列的操作,生成可能的TSP路径并不断优化,以提供后续启发式算法的初始解。文中还讨论了算法优化策略,包括避免重复序列和采用禁忌搜索思想来扩大解空间和提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于λ-optimal算法在启发式中初始化解的应用


这里讨论组合优化中初始解的生成问题。组合优化问题,很多情况下,解的生成是随机的或者是采用某种直观上满足题意的初始化方法,要知道初始解对于找到局部最优乃至是最好的解是极其重要的,就好比条条大路通罗马,或者你直接就出生在罗马。接下来要说明的算法是在进行各种不同的启发式算法求解之前,对初始解进行优化的算法且比较通用。
在实际问题中,目前笔者暂时遇到的可以使用的地方一个是用于解的生成,还有一个地方就是在启发式算法迭代求解的过程中,在解的再生成中应用这种λ-optimal算法的思想。
描述问题或者算法要有头有尾,先说明问题,之后算法的描述建立在此之上,也就更加通俗易懂。

TSP问题介绍

旅行推销员问题可以这样表述:“要求推销员在给定的n个城市中访问一次且仅访问一次,从任意一个城市出发,返回出发地。他应该选择什么样的路线或旅行,以使总旅行距离最小化?”除了距离,还可以考虑时间、成本等其他概念。

在数学中,可以描述为:
在一个无向完全图中,把城市看作坐标点,每个城市之间都有路,且一般路径长度用欧氏距离描述

给定一个"成本矩阵" D = (D i j),dij(i,j是下标)为i城市和j城市之间的距离成本࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

原创小白变怪兽

帮助原创小白成为怪兽吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值