POJ-1860 Currency Exchange(bellman判正环)

探讨通过一系列货币兑换操作实现资本增值的可能性。面对多种货币及兑换点,分析如何利用不同的汇率和手续费,在不减少初始资金的前提下,最终回到原始货币类型时实现财富的增长。

Currency Exchange

Time Limit: 1000MSMemory Limit: 30000K
Total Submissions: 50099Accepted: 19517

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104.

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

Source

“想知道他是否可以在一些交换操作后以某种方式增加他的资本。”

是否存在正环的问题。

利用最短路算法中的bellman判断负环的性质,稍加修改成判断正环的即可。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
int m,n,s;
double v;
double dis[210];
int cou;
int x1,x2;
double x1h,x1f,x2h,x2f;

struct ch
{
int a,b;
double h,f; 
}sh[210];

void add(int a,int b,double xh,double xf,double yh,double yf)
{
    sh[cou].a=a;
    sh[cou].b=b;
   sh[cou].h=xh;
    sh[cou++].f=xf;
    sh[cou].a=b;
    sh[cou].b=a;
   sh[cou].h=yh;
    sh[cou++].f=yf;
}
int bellman()
{ memset(dis,0,sizeof(dis));
   dis[s]=v;
   for(int i=1;i<=n;i++)
  {
     int f=1;
     for(int j=1;j<cou;j++)
     {
         if(dis[sh[j].b]<(dis[sh[j].a]-sh[j].f)*sh[j].h)
          {
                 f=0;
           dis[sh[j].b]=(dis[sh[j].a]-sh[j].f)*sh[j].h;
          }
      }
       if(f==1)break;
  }
  for(int j=1;j<cou;j++)
{
 if(dis[sh[j].b]<(dis[sh[j].a]-sh[j].f)*sh[j].h)return 1;
}
return 0;
}

int main()
{
while(cin>>n>>m>>s>>v)
{
   cou=1;
   while(m--)
   {
        cin>>x1>>x2>>x1h>>x1f>>x2h>>x2f;
        add(x1,x2,x1h,x1f,x2h,x2f);
   }
   if(bellman())printf("YES\n");
    else printf("NO\n");
}
return 0;
}

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖向与逆向运动学求解、向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:向逆向运动学求解、向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值