POJ-1797Heavy Transportation(最短路)

本文介绍了一个基于Dijkstra算法修改版的问题解决方法,旨在找出城市规划中从起点到终点的最大运输重量,适用于不超过1000个节点的场景。

Heavy Transportation

Time Limit: 3000MSMemory Limit: 30000K
Total Submissions: 76679Accepted: 18675

Description

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

数据大小在1000,用dijkstra算法。

你的任务是找到从路口 1到路口 n(客户的地方)可以运输的最大重量”

步骤:

1.把dijkstra算法找最短的一条边,改成找最长的。

2.扩展的条件也相应的做出改变

//C
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf=-0x3f3f3f3f;
int n,m,a[1010][1010],book[1010],dis[1010];

void dijkstra()
{
	int u;
	memset(book,0,sizeof(book));
	for(int i=1;i<=n;i++)
	dis[i]=a[1][i];
	book[1]=1;dis[1]=0;
	for(int i=1;i<n;i++)
	{
		int maxx=inf;
		for(int j=1;j<=n;j++)
		{
			if(book[j]==0&&dis[j]>maxx)
			{
				maxx=dis[j];
				u=j;
			}
		}
		book[u]=1;
		for(int v=1;v<=n;v++)
		{
			if(a[u][v]>inf&&dis[u]>dis[v]&&a[u][v]>dis[v])//1. 5.
			{
				if(dis[u]>a[u][v])
				dis[v]=a[u][v];
				else
				dis[v]=dis[u];
			}
		}
	}
}
int main()
{
	int T;scanf("%d",&T);
	int countt=1;
	while(T--)
	{
		
		int x1,x2,s;
		scanf("%d%d",&n,&m);
		memset(a,inf,sizeof(a));//4.
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d",&x1,&x2,&s);
			if(s>a[x1][x2])//2.
			a[x1][x2]=a[x2][x1]=s;
		}
		dijkstra();
		printf("Scenario #%d:\n",countt++);
		printf("%d\n",dis[n]);//3.
		printf("\n");
	}
	return 0;
}

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值