P3119 [USACO15JAN]草鉴定Grass Cownoisseur(缩点+spfa)

解决贝西牛的问题,通过单向路径访问尽可能多的草场,允许逆向一次以增加访问的草场数量。

题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

输入输出格式

输入格式:

 

INPUT: (file grass.in)

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).

The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

输入:

第一行:草场数n,道路数m。

以下m行,每行x和y表明有x到y的单向边,不会有重复的道路出现。

 

输出格式:

 

OUTPUT: (file grass.out)

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

输出:

一个数,逆行一次最多可以走几个草场。

 

输入输出样例

输入样例#1: 复制

7 10 
1 2 
3 1 
2 5 
2 4 
3 7 
3 5 
3 6 
6 5 
7 2 
4 7 

输出样例#1: 复制

6 

说明

SOLUTION NOTES:

Here is an ASCII drawing of the sample input:

v---3-->6
7   | \ |
^\  v  \|
| \ 1   |
|   |   v
|   v   5
4<--2---^

Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling

backwards on the path between 5 and 3. When she arrives at 3 she

cannot reach 6 without following another backwards path.

解题思路

 先缩点,然后建新图,建一个正向图和一个反向图,用spfa求出1到每个点的最大路程(可经过最多农村数)和每个点到1的最大路程(通过反向图)。然后枚举每一条边u->v,求(1到v的最大距离+u到1的最大距离)中最大的值就是答案。

代码如下

#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
#include <queue>
#include <stack>
#define maxn 100005
using namespace std;
vector<int> g[maxn];
int scc[maxn];
int dfn[maxn], low[maxn];
int id, cnt;
bool vis[maxn];
stack<int> sta;
int s;
void tarjan(int x)
{
	id ++;
	sta.push(x);
	vis[x] = true;
	low[x] = dfn[x] = id;
	for(int i = 0; i < g[x].size(); i ++){
		int r = g[x][i];
		if(!dfn[r]){
			tarjan(r);
			low[x] = min(low[x], low[r]);
		}
		else if(vis[r])
			low[x] = min(low[x], dfn[r]);
	}
	if(dfn[x] == low[x]){
		cnt ++;
		while(!sta.empty()){
			int top = sta.top();
			sta.pop();
			vis[top] = false;
			scc[top] = cnt;
			if(top == x)
				break;
		}
	}
}
vector<int> g1[maxn];
vector<int> g2[maxn];
int v[maxn];
int dis1[maxn], dis2[maxn];
void spfa1()
{
	memset(vis, 0, sizeof(vis));
	queue<int> que;
	que.push(s);
	dis1[s] = v[s];
	vis[s] = true;
	while(!que.empty()){
		int top = que.front();
		que.pop();
		vis[top] = false;
		for(int i = 0; i < g1[top].size(); i ++){
			int r = g1[top][i];
			//cout << top << " " << r << " " << dis1[top] << endl;
			if(dis1[top] + v[r] > dis1[r]){
				dis1[r] = dis1[top] + v[r];
				if(!vis[r]){
					vis[r] = true;
					que.push(r);
				}
			}
		}
	}
}
void spfa2()
{
	memset(vis, 0, sizeof(vis));
	queue<int> que;
	que.push(s);
	vis[s] = true;
	dis2[s] = v[s];
	while(!que.empty()){
		int top = que.front();
		que.pop();
		vis[top] = false;
		for(int i = 0; i < g2[top].size(); i ++){
			int r = g2[top][i];
			if(dis2[top] + v[r] > dis2[r]){
				dis2[r] = dis2[top] + v[r];
				if(!vis[r]){
					vis[r] = true;
					que.push(r);
				}
			}
		}
	}
}
int main()
{
	int n, m;
	cin >> n >> m;
	for(int i = 1; i <= n; i ++)
		g[0].push_back(i);
	for(int i = 0; i < m; i ++){
		int x, y;
		scanf("%d%d", &x, &y);
		g[x].push_back(y);
	}
	cnt = id = 0;
	tarjan(0);
	s = scc[1];
	for(int i = 1; i <= n; i ++){
		v[scc[i]] ++;
		for(int j = 0; j < g[i].size(); j ++){
			int r = g[i][j];
			if(scc[i] != scc[r]){
				g1[scc[i]].push_back(scc[r]);
				g2[scc[r]].push_back(scc[i]);
			}
		} 
	}
	spfa1();
	spfa2();
	int ans = v[s];
	for(int i = 1; i < cnt; i ++){
		for(int j = 0; j < g1[i].size(); j ++){
			int r = g1[i][j];
			if(dis1[r] && dis2[i])
				ans = max(ans, dis1[r] + dis2[i] - v[s]); //
		}
	}
	cout << ans << endl;
	return 0;
} 

 

<think>好的,我现在需要帮助用户查找关于USACO 2024年1月竞赛中“Mooball Teams III”问题的解决方案或资料。首先,我应该先检查现有的引用内容,看看是否有相关的信息。根据用户提供的三个引用,引用[1]是关于循环舍入问题,引用[2]是多数意见问题,引用[3]是关于抓捕问题的铂金级题目。这三个引用中并没有直接提到“Mooball Teams III”的问题,所以可能需要寻找其他途径。 接下来,用户可能需要了解该问题的具体内容和要求。由于题目名称中的“Mooball Teams III”可能涉及组合优化、动态规划或图论等算法。例如,可能有关于队伍组合、最优匹配或资源分配的问题。我需要考虑常见的USACO题目类型,推测可能的解题思路。 考虑到USACO竞赛的时间,2024年1月的比赛可能较新,官方题解可能还未公开。通常USACO在比赛结束后一段时间会发布官方解答,但有时可能需要参赛者自己等待。因此,建议用户关注USACO官网或论坛,如Codeforces、Reddit的r/usaco,或者USACO Guide等平台,这些地方可能会有参赛者分享思路。 另外,可以建议用户检查问题陈述中的输入输出样例,尝试逆向推导算法。例如,如果问题涉及最大匹配,可能需要使用贪心或匈牙利算法;如果是动态规划,可能涉及状态转移方程的设计。同时,建议用户先尝试暴力解法,再逐步优化,这是常见的解题步骤。 还需要提醒用户注意数据规模,不同的算法时间复杂度是否适合题目给定的数据范围。例如,若数据量较大,可能需要O(n log n)或更优的算法,而非暴力解法。 最后,由于用户提供的引用中没有直接相关的资料,可能需要告知用户当前无法提供具体解决方案,但可以给予一般性的解题策略和资源获取建议,帮助用户自行进一步探索。</think>关于USACO 2024年1月竞赛的“Mooball Teams III”问题,目前尚未在公开平台找到完整的官方解决方案。不过可以基于USACO竞赛常见题型特,提供以下解题思路参考: ### 可能涉及的知识 1. **组合数学**:若题目涉及队伍组合或排列限制,可能需要使用组合数公式$C(n,k)$或容斥原理 2. **贪心算法**:在资源分配类问题中,可能需要按特定规则排序后贪心选择 3. **动态规划**:若存在状态转移关系,可能需要构建二维DP数组,例如$dp[i][j]$表示前i个元素选择j个的方案数 4. **图论建模**:若涉及团队关系约束,可能需要构建二分图进行最大匹配计算 ### 推荐实践步骤 1. **分析约束条件**:仔细阅读题目中的特殊条件,如: - 队伍人数限制 - 队员间兼容性规则 - 时间/空间复杂度要求 2. **输入输出样例解析**:通过逆向工程理解核心算法逻辑 ```python # 示例输入可能格式 3 2 # 3名队员,需组建2人队伍 1 2 # 兼容对 2 3 ``` 3. **基础代码框架**(以组合问题为例): ```python n, k = map(int, input().split()) compatible = [[] for _ in range(n+1)] # 构建兼容关系图 for _ in range(m): a, b = map(int, input().split()) compatible[a].append(b) compatible[b].append(a) # 动态规划解法示例 dp = [[0]*(k+1) for _ in range(n+1)] dp[0][0] = 1 for i in range(1, n+1): for j in range(k+1): dp[i][j] = dp[i-1][j] # 不选当前队员 if j > 0: dp[i][j] += dp[i-1][j-1] * valid_options(i) # 选当前队员的合法情况 ``` ### 资源获取建议 1. **USACO官方论坛**:竞赛结束后约2-3个月会发布题解 2. **USACO Guide**(https://usaco.guide/)查看相似题目解析 3. **Codeforces博客**搜索"USACO 2024 Jan"关键词 4. **GitHub代码库**:部分参赛者会公开AC代码(注意遵守竞赛规则)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值