/////////////////TransformationParameter的caffe消息定义
/*
// Message that stores parameters used to apply transformation
// to the data layer's data
message TransformationParameter {
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 1 [default = 1];
// Specify if we want to randomly mirror data.
optional bool mirror = 2 [default = false];
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 3 [default = 0];
// mean_file and mean_value cannot be specified at the same time
optional string mean_file = 4;
// if specified can be repeated once (would substract it from all the channels)
// or can be repeated the same number of times as channels
// (would subtract them from the corresponding channel)
repeated float mean_value = 5;
// Force the decoded image to have 3 color channels.
optional bool force_color = 6 [default = false];
// Force the decoded image to have 1 color channels.
optional bool force_gray = 7 [default = false];
}
*/
/*
DataTransformer类主要负责对数据进行预处理, 比如减去均值、进行crop,镜像,强制设置为彩色强制设置为灰度图像以及像素值的缩放,此外该类还将Datum、const vector<Datum>、cv::Mat&、vector<cv::Mat> 、Blob<Dtype>*类型的数据变换到目标大小的blob。负责对上述类型的数据推断其shape。
*/
#ifndef CAFFE_DATA_TRANSFORMER_HPP
#define CAFFE_DATA_TRANSFORMER_HPP
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Applies common transformations to the input data, such as
* scaling, mirroring, substracting the image mean...
*/
template <typename Dtype>
class DataTransformer {
public:
explicit DataTransformer(const TransformationParameter& param, Phase phase);
virtual ~DataTransformer() {}
/**
* @brief Initialize the Random number generations if needed by the
* transformation.
*/
// 初始化随机数生成器,因为在对数据进行变换的时候有可能用到,比如说打乱数据的输入顺序
void InitRand();
/**
* @brief Applies the transformation defined in the data layer's
* transform_param block to the data.
*
* @param datum
* Datum containing the data to be transformed.
* @param transformed_blob
* This is destination blob. It can be part of top blob's data if
* set_cpu_data() is used. See data_layer.cpp for an example.
*/
// 对Datum的数据进行变换,放入到transformed_blob中
void Transform(const Datum& datum, Blob<Dtype>* transformed_blob);
/**
* @brief Applies the transformation defined in the data layer's
* transform_param block to a vector of Datum.
*
* @param datum_vector
* A vector of Datum containing the data to be transformed.
* @param transformed_blob
* This is destination blob. It can be part of top blob's data if
* set_cpu_data() is used. See memory_layer.cpp for an example.
*/
// 对Datum容器的数据进行变换翻入到transformed_blob
void Transform(const vector<Datum> & datum_vector,
Blob<Dtype>* transformed_blob);
#ifdef USE_OPENCV
/**
* @brief Applies the transformation defined in the data layer's
* transform_param block to a vector of Mat.
*
* @param mat_vector
* A vector of Mat containing the data to be transformed.
* @param transformed_blob
* This is destination blob. It can be part of top blob's data if
* set_cpu_data() is used. See memory_layer.cpp for an example.
*/
// 如果定义OpenCV还可能对mat容器数据类型的数据进行变换
void Transform(const vector<cv::Mat> & mat_vector,
Blob<Dtype>* transformed_blob);
/**
* @brief Applies the transformation defined in the data layer's
* transform_param block to a cv::Mat
*
* @param cv_img
* cv::Mat containing the data to be transformed.
* @param transformed_blob
* This is destination blob. It can be part of top blob's data if
* set_cpu_data() is used. See image_data_layer.cpp for an example.
*/
// 将opencv读取的单个图像转换到blob中去
void Transform(const cv::Mat& cv_img, Blob<Dtype>* transformed_blob);
#endif // USE_OPENCV
/**
* @brief Applies the same transformation defined in the data layer's
* transform_param block to all the num images in a input_blob.
*
* @param input_blob
* A Blob containing the data to be transformed. It applies the same
* transformation to all the num images in the blob.
* @param transformed_blob
* This is destination blob, it will contain as many images as the
* input blob. It can be part of top blob's data.
*/
// 将输入的blob进行变换,可能是取出blob的中的一部分数据到新的blob
void Transform(Blob<Dtype>* input_blob, Blob<Dtype>* transformed_blob);
/**
* @brief Infers the shape of transformed_blob will have when
* the transformation is applied to the data.
*
* @param datum
* Datum containing the data to be transformed.
*/
// 根据Datum获取blob的形状
vector<int> InferBlobShape(const Datum& datum);
/**
* @brief Infers the shape of transformed_blob will have when
* the transformation is applied to the data.
* It uses the first element to infer the shape of the blob.
*
* @param datum_vector
* A vector of Datum containing the data to be transformed.
*/
// 根据Datum容器获取blob的形状
vector<int> InferBlobShape(const vector<Datum> & datum_vector);
/**
* @brief Infers the shape of transformed_blob will have when
* the transformation is applied to the data.
* It uses the first element to infer the shape of the blob.
*
* @param mat_vector
* A vector of Mat containing the data to be transformed.
*/
#ifdef USE_OPENCV
// 根据Mat容器获取blob的形状
vector<int> InferBlobShape(const vector<cv::Mat> & mat_vector);
/**
* @brief Infers the shape of transformed_blob will have when
* the transformation is applied to the data.
*
* @param cv_img
* cv::Mat containing the data to be transformed.
*/
// 根据Mat获取blob的形状
vector<int> InferBlobShape(const cv::Mat& cv_img);
#endif // USE_OPENCV
protected:
/**
* @brief Generates a random integer from Uniform({0, 1, ..., n-1}).
*
* @param n
* The upperbound (exclusive) value of the random number.
* @return
* A uniformly random integer value from ({0, 1, ..., n-1}).
*/
// 生成从0到n-1的服从均匀分布的随机数,要求继承他的都必须实现如何生成随机数
virtual int Rand(int n);
// 将给定的Datum进行转换
void Transform(const Datum& datum, Dtype* transformed_data);
// 变换所使用的参数
TransformationParameter param_;
// 随机数生成器的种子
shared_ptr<Caffe::RNG> rng_;
// 是训练还是测试?
Phase phase_;
// 数据均值 blob
Blob<Dtype> data_mean_;
// 数据均值blob的容器
vector<Dtype> mean_values_;
};
} // namespace caffe
#endif // CAFFE_DATA_TRANSFORMER_HPP_