在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法。
Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。
1. Q-Learning算法的引入
Q-Learning算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集SS, 动作集AA, 即时奖励RR,衰减因子γγ, 探索率ϵϵ, 求解最优的动作价值函数q∗q∗和最优策略π∗π∗。
这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。
再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。
对于Q-Learning
本文主要介绍了强化学习中的时序差分离线控制算法Q-Learning,对比了Q-Learning与SARSA的区别。Q-Learning通过贪婪策略更新Q值,不需要环境模型,适用于离线学习。Q-Learning的学习过程包括迭代更新Q表,最终得到最优策略,但受训练数据影响较大。
订阅专栏 解锁全文
900

被折叠的 条评论
为什么被折叠?



