机器学习中的数学(2)-线性回归,偏差、方差权衡

本文介绍了线性回归的基本概念,强调了偏差和方差在模型选择中的重要性。线性回归不仅追求点集的拟合度,还考虑模型的简洁性。最小二乘法作为线性回归的常见方法,其有效性基于误差的高斯分布假设。文章还探讨了偏差和方差的权衡,指出模型复杂度与偏差和方差的关系,以及在实际应用中的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

    距离上次发文章,也快有半个月的时间了,这半个月的时间里又在学习机器学习的道路上摸索着前进,积累了一点心得,以后会慢慢的写写这些心得。写文章是促进自己对知识认识的一个好方法,看书的时候往往不是非常细,所以有些公式、知识点什么的就一带而过,里面的一些具体意义就不容易理解了。而写文章,特别是写科普性的文章,需要对里面的具体意义弄明白,甚至还要能举出更生动的例子,这是一个挑战。为了写文章,往往需要把之前自己认为看明白的内容重新理解一下。

    机器学习可不是一个完全的技术性的东西,之前和部门老大在outing的时候一直在聊这个问题,机器学习绝对不是一个一个孤立的算法堆砌起来的,想要像看《算法导论》这样看机器学习是个不可取的方法,机器学习里面有几个东西一直贯穿全书,比如说数据的分布、最大似然(以及求极值的几个方法,不过这个比较数学了),偏差、方差的权衡,还有特征选择,模型选择,混合模型等等知识,这些知识像砖头、水泥一样构成了机器学习里面的一个个的算法。想要真正学好这些算法,一定要静下心来将这些基础知识弄清楚,才能够真正理解、实现好各种机器学习算法。

    今天的主题是线性回归,也会提一下偏差、方差的均衡这个主题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值