机器学习中的数学(3)-模型组合(Model Combining)之Boosting与Gradient Boosting

本文介绍了Boosting和Gradient Boosting的概念及其数学基础。Boosting是一种通过组合多个弱分类器形成强分类器的算法,每次迭代时提高错误样本的权重。Gradient Boosting则在损失函数的梯度下降方向构建模型,优化过程采用梯度下降,通过多次迭代逐步提升模型性能。文章以数学公式详细阐述了Gradient Boosting的优化过程,并提到了它在实际应用如GBDT中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

    本来上一章的结尾提到,准备写写线性分类的问题,文章都已经写得差不多了,但是突然听说最近Team准备做一套分布式的分类器,可能会使用Random Forest来做,下了几篇论文看了看,简单的random forest还比较容易弄懂,复杂一点的还会与boosting等算法结合(参见iccv09),对于boosting也不甚了解,所以临时抱佛脚的看了看。说起boosting,强哥之前实现过一套Gradient Boosting Decision Tree(GBDT)算法,正好参考一下。

    最近看的一些论文中发现了模型组合的好处,比如GBDT或者rf,都是将简单的模型组合起来,效果比单个更复杂的模型好。组合的方式很多,随机化(比如random forest),Boosting(比如GBDT)都是其中典型的方法,今天主要谈谈Gradient Boosting方法(这个与传统的Boosting还有一些不同)的一些数学基础,有了这个数学基础,上面的应用可以看Freidman的Gradient Boosting Machine。

    本文要求读者学过基本的大学数学,另外对分类、回归等基本的机器学习概念了解。

    本文主要参考资料是prml与Gradient Boosting Machin

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值