简单线性回归

回归分析:用来建立方程模拟两个或以上变量之间如何关联
简单线性回归:
1、包含一个自变量X和一个y因变量Y
2、两个变量可以用一条直线模拟出来(多个变量叫做多元线性回归)
一、统计量:描述数据特征
1、均值(mean):

2、中位数(median):数据顺序排列,居于中间位置的变量
3、众数(mode):数据中出现次数最多的数
二、离散程度衡量
1、方差(variance):

2、标准差(standard deviation):

三、简单线性回归模型:

关于偏差ε的假定
    1 是一个随机的变量,均值为0
    2 ε的方差(variance)对于所有的自变量x是一样的
    3 ε的值是独立的
    4 ε满足正态分布
3.1 简单线性回归方程:E(Y)=β0+β1*X
这个方程对应的图像是一条直线,称作回归线
其中{ β0是回归线的截距,β1是回归线的斜率  ,E(y)是在一个给定x值下y的期望值(均值)}
3.2、估计的简单线性回归方程
          ŷ=b0+b1
 这个方程叫做估计线性方程(estimated regression line)
 其中{b0是估计线性方程的纵截距,b1是估计线性方程的斜率,ŷ是在自变量x等于一个给定值的时候,y的估计值 }
3.3、如何练处适合简单线性回归模型的最佳回归线

只要使sum of squares最小就可以了:

求估值方程的b1:

求估值方程的b0:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值