POJ3641Pseudoprime numbers-快速幂的使用

本文介绍了一个程序,该程序基于费马小定理来判断一个数是否为特定基数的伪素数。通过计算给定的a^p mod p 是否等于 a 来确定p是否为a的伪素数,并排除真正的素数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 12457 Accepted: 5363

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

Source

Waterloo Local Contest, 2007.9.23

题目大意:输入p,n若p为素数,输出no,否则若n^p%p=n 输出yes 不然输出no

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
int a,p;
int su(int p)
{
    if(p < 2)
        return 0;
    for(int i=2; i<=sqrt(p+0.0); i++)
    {
        if(p%i==0)
        {
            return 0;
        }
    }
    return 1;
}

int power(int p, int a)
{
    ll r = p, t = 1, mod = p;
    while(r > 0)
    {
        if(r&1)
            t = ((t%mod)*(a%mod))%mod;
        a = ((a%mod)*(a%mod))%mod;
        r >>= 1;
    }
    return t%mod;
}


int main()
{
    int p, a;
    while(scanf("%d%d", &p, &a), p||a)
    {
        if(su(p))
        {
            printf("no\n");
            continue;
        }
        else if(power(p, a) == a)
        {
            printf("yes\n");
        }
        else
            printf("no\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值