Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12457 | Accepted: 5363 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
Source
Waterloo Local Contest, 2007.9.23
题目大意:输入p,n若p为素数,输出no,否则若n^p%p=n 输出yes 不然输出no
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
int a,p;
int su(int p)
{
if(p < 2)
return 0;
for(int i=2; i<=sqrt(p+0.0); i++)
{
if(p%i==0)
{
return 0;
}
}
return 1;
}
int power(int p, int a)
{
ll r = p, t = 1, mod = p;
while(r > 0)
{
if(r&1)
t = ((t%mod)*(a%mod))%mod;
a = ((a%mod)*(a%mod))%mod;
r >>= 1;
}
return t%mod;
}
int main()
{
int p, a;
while(scanf("%d%d", &p, &a), p||a)
{
if(su(p))
{
printf("no\n");
continue;
}
else if(power(p, a) == a)
{
printf("yes\n");
}
else
printf("no\n");
}
return 0;
}