正则化是建模,训练以及预测过程中的组成部分,它包括解释训练数据limitation and finiteness.
regularization strategies.
- put extra constraints on a machine learning model, such as adding restrictions on the parameter values.
- add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values. If chosen
carefully, these extra constraints and penalties can lead to improved performance on the test set. constraints and penalties are designed to encode specific kinds of prior knowledge.
预测器的正则化在降低variance和增加bias之间做一个妥协。一个有效的正则是大幅度的降低variance,但并没有使得bias增大太多。
本文探讨了正则化作为机器学习模型的重要组成部分,如何通过限制参数值来减少过拟合现象。正则化策略包括在目标函数中加入额外项以形成软约束,这些约束能够有效降低模型复杂度,平衡偏差与方差,从而提高泛化能力。
1068

被折叠的 条评论
为什么被折叠?



