Codeforces 49E

本文介绍了一种基于字符串匹配的算法,该算法通过构建多个辅助数组来高效地解决两个字符串之间的最短公共祖先问题。通过预处理阶段,算法可以快速确定一个字符串是否能够转换为另一个字符串,并在此基础上计算出最短公共祖先的长度。

dp[i][j][c],dp1[i][j][c]子串[l,r]能否完全变成c
vv1[l][c],vv2[l][c]从l开始的能完全变成c的所有r
ans[i][j],ss串的前i个字母和tt串的前j个字母的最短祖先

#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
const int N=60;
char ss[N],tt[N];
int dp[N][N][30];
int dp1[N][N][30];
vector<int> vv[30];
vector<int> vv1[N][30],vv2[N][30];
void init(){
    for(int i=0;i<26;i++)vv[i].clear();
    for(int i=0;i<50;i++){
        for(int j=0;j<26;j++){
            vv1[i][j].clear();
            vv2[i][j].clear();
        }
    }
}
int ans[N][N];

int main(){
    #ifdef DouBi
    freopen("in.cpp","r",stdin);
    #endif // DouBi
    while(scanf("%s%s",&ss,&tt)!=EOF){
        init();
        int n;scanf("%d",&n);
        for(int i=0;i<n;i++){
            char tmp[10];scanf("%s",tmp);
            vv[tmp[0]-'a'].push_back(tmp[3]-'a');
            vv[tmp[0]-'a'].push_back(tmp[4]-'a');
        }
        int ls=strlen(ss),lt=strlen(tt);
        memset(dp,0,sizeof(dp));
        for(int i=ls-1;i>=0;i--){
            dp[i][i][ss[i]-'a']=1;
            vv1[i][ss[i]-'a'].push_back(i);
            for(int j=i+1;j<ls;j++){
                for(int c=0;c<26;c++){
                    int ed=vv[c].size();
                    int flag=0;
                    for(int x=0;x<ed&&!flag;x+=2){
                        int a=vv[c][x],b=vv[c][x+1];
                        for(int k=i;k<j;k++){
                            if(dp[i][k][a]&&dp[k+1][j][b]){
                                flag=1;break;
                            }
                        }
                    }
                    dp[i][j][c]=flag;
                    if(flag){
                        vv1[i][c].push_back(j);
                    }
                }
            }
        }
        memset(dp1,0,sizeof(dp1));
        for(int i=lt-1;i>=0;i--){
            dp1[i][i][tt[i]-'a']=1;
            vv2[i][tt[i]-'a'].push_back(i);
            for(int j=i+1;j<lt;j++){
                for(int c=0;c<26;c++){
                    int ed=vv[c].size();
                    int flag=0;
                    for(int x=0;x<ed&&!flag;x+=2){
                        int a=vv[c][x],b=vv[c][x+1];
                        for(int k=i;k<j;k++){
                            if(dp1[i][k][a]&&dp1[k+1][j][b]){
                                flag=1;break;
                            }
                        }
                    }
                    dp1[i][j][c]=flag;
                    if(flag){
                        vv2[i][c].push_back(j);
                    }
                }
            }
        }
        memset(ans,-1,sizeof(ans));
        for(int c=0;c<26;c++){
            int ed1=vv1[0][c].size();
            int ed2=vv2[0][c].size();
            for(int x=0;x<ed1;x++){
                for(int y=0;y<ed2;y++){
                    int a=vv1[0][c][x];
                    int b=vv2[0][c][y];
                    ans[a][b]=1;
                }
            }
        }
        for(int i=0;i<ls-1;i++){
            for(int j=0;j<lt-1;j++)if(ans[i][j]!=-1){
                for(int c=0;c<26;c++){
                    int ed1=vv1[i+1][c].size();
                    int ed2=vv2[j+1][c].size();
                    for(int x=0;x<ed1;x++){
                        for(int y=0;y<ed2;y++){
                            int a=vv1[i+1][c][x];
                            int b=vv2[j+1][c][y];
                            if(ans[a][b]==-1){
                                ans[a][b]=ans[i][j]+1;
                            }
                            else {
                                ans[a][b]=min(ans[a][b],ans[i][j]+1);
                            }
                        }
                    }
                }
            }
        }
        printf("%d\n",ans[ls-1][lt-1]);
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值