热点综述 | 单细胞+空间转录组的整合分析方法总结

本文综述了scRNA-seq与空间转录组学的整合分析方法,探讨了去卷积和映射策略,以及未来的发展趋势,如深度学习模型和实时细胞追踪。通过整合分析,可以揭示组织中细胞亚群的高分辨率图谱,为疾病研究和治疗提供新见解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前scRNA-seq将每个转录物与单个细胞相关联,但关于这些转录物在组织中的位置信息丢失了;相反的,空间转录组学技术知道转录物的位置,却不知道是哪个细胞产生了转录物。因此,scRNA-seq与空间转录组学的整合可以产生组织中细胞亚群的高分辨率图谱。

来自美国的科研人员在《Nature reviews genetics》发表综述文章,回顾了整合scRNA-seq与空间转录组学技术研究的尝试和努力,包括新兴的整合计算方法,并提出了有效结合当前方法的途径。

整合scRNA-seq和空间转录组学研究的流程模式

scRNA-seq+空间组学整合分析的研究进展

目前已有整合空间转录组学和scRNA-seq数据分析的研究,提供了组织组成和功能的新见解。下表展示了相关的研究现状,包括正常的组织稳态和发育、肿瘤微环境、其他病变和损伤的微环境等方向。

解析scRNA-seq和空间转录组数据的研究

scRNA-seq+空间组学整合分析的计算方法

CCA(canonical correlation analysis)是一种常用的多变量统计分析方法,可以用于整合分析单细胞转录组空间转录组的数据。 单细胞转录组是指对单个细胞转录组进行测量和分析,可以了解细胞间的异质性和功能特征。而空间转录组是指在组织或器官水平上,对转录组进行测量和分析,可以了解细胞空间上的分布和相互作用。 在整合分析单细胞转录组空间转录组时,首先需要对两种数据进行预处理,例如数据清洗、标准化和归一化等。然后,可以利用CCA方法来识别两种数据之间共享的信息和变化模式。 CCA通过最大化两个数据集之间的相关性,找到两者之间最大化的公共变量。具体步骤包括:首先,计算两个数据集之间的相关性矩阵;然后,利用Singular Value Decomposition(奇异值分解)将相关性矩阵分解成特征向量和特征值;最后,根据特征值的大小选择最相关的特征向量,得到两个数据集之间的相关性。 通过整合分析单细胞转录组空间转录组的数据,可以获得以下优势:一是可以揭示细胞类型和组织结构之间的关系,帮助我们了解细胞空间分布模式;二是可以发现特定细胞类型在不同组织中的表达模式和功能特征;三是可以识别具有生物学意义的共同变化模式,为进一步研究和解读提供线索。 当然,整合分析单细胞转录组空间转录组的数据还需要结合其他的统计方法和生物学解释来进行综合分析和解读。这样的整合方法可以为我们更好地理解细胞和组织的功能和相互作用提供重要的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值