蓝桥杯刷题5--GCD和LCM

目录

1. GCD

1.1 性质

1.2 代码实现

2. LCM

2.1 代码实现

3. 习题

3.1 等差数列

3.2 Hankson的趣味题

3.3 最大比例

3.4 GCD


1. GCD

整数a和b的最大公约数是能同时整除a和b的最大整数,记为gcd(a, b)

1.1 性质

GCD有关的题目一般会考核GCD的性质。
  (1)gcd(a, b) = gcd(a, a+b) = gcd(a, k·a+b)
  (2)gcd(ka, kb) = k·gcd(a, b)
  (3)多个整数的最大公约数:gcd(a, b, c) = gcd(gcd(a, b), c)
  (4)若gcd(a, b) = d,则gcd(a/d, b/d) = 1,即a/d与b/d互素
  (5)gcd(a+cb, b) = gcd(a, b)

1.2 代码实现

import java.math.BigInteger;
public class Main {
    public static void main(String[] args) {
        System.out.println(gcd(45, 9));                // 9
        System.out.println(gcd(0, 42));                // 42
        System.out.println(gcd(42, 0));                // 42
        System.out.println(gcd(0, 0));                 // 0
        System.out.println(gcd(20, 15));               // 5
        System.out.println(gcd(-20, 15));              // -5
        System.out.println(gcd(20, -15));              // 5
        System.out.println(gcd(-20, -15));             // -5
        System.out.println(gcd(new BigInteger("98938441343232"), new BigInteger("33422"))); // 2
    }
    public static long gcd(long a, long b) {
        if (b == 0)   return a;        
        return gcd(b, a % b);
    }
    public static BigInteger gcd(BigInteger a, BigInteger b) {
        return a.gcd(b);
    }
}

2. L

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值