200.回溯算法:子集||(力扣)

class Solution {
public:
    vector<int> res;                // 当前子集
    vector<vector<int>> result;     // 存储所有子集

    void backtracing(vector<int>& nums, int index, vector<bool>& used) {
        result.push_back(res);      // 将当前子集加入结果

        for (int i = index; i < nums.size(); i++) {
            // 跳过重复元素
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1]==false) {
                continue;
            }

            res.push_back(nums[i]);  // 将当前元素加入子集
            used[i] = true;          // 标记当前元素已使用

            backtracing(nums, i + 1, used); // 递归生成后续子集

            used[i] = false;         // 取消标记,回溯
            res.pop_back();          // 从子集中移除当前元素,回溯
        }
    }

    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        vector<bool> used(nums.size(), false);  // 标记数组元素是否被使用
        sort(nums.begin(), nums.end());         // 排序数组以便于去重
        backtracing(nums, 0, used);             // 调用回溯函数开始生成子集
        return result;                          // 返回所有生成的子集
    }
};

主函数调用

  1. subsetsWithDup 函数:
    • 输入 nums = {1, 2, 2}
    • 初始化 used = {false, false, false}
    • nums 进行排序(尽管已经排好序了),结果 nums = {1, 2, 2}
    • 调用 backtracing(nums, 0, used)

回溯函数执行

  1. 第一次调用 backtracing(nums, 0, used):

    • index = 0
    • 当前子集 res = {}
    • 当前结果 result = {{}}

    循环1(i = 0):

    • nums[0] = 1 未使用
    • res.push_back(1) -> res = {1}
    • used[0] = true
    • 调用 backtracing(nums, 1, used)
  2. 第二次调用 backtracing(nums, 1, used):

    • index = 1
    • 当前子集 res = {1}
    • 当前结果 result = {{}, {1}}

    循环1(i = 1):

    • nums[1] = 2 未使用
    • res.push_back(2) -> res = {1, 2}
    • used[1] = true
    • 调用 backtracing(nums, 2, used)
  3. 第三次调用 backtracing(nums, 2, used):

    • index = 2
    • 当前子集 res = {1, 2}
    • 当前结果 result = {{}, {1}, {1, 2}}

    循环1(i = 2):

    • nums[2] = 2 未使用
    • res.push_back(2) -> res = {1, 2, 2}
    • used[2] = true
    • 调用 backtracing(nums, 3, used)
  4. 第四次调用 backtracing(nums, 3, used):

    • index = 3
    • 当前子集 res = {1, 2, 2}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}}
    • 结束条件 index >= nums.size() 达成,返回上一层

    回溯:

    • res.pop_back() -> res = {1, 2}
    • used[2] = false
    • 返回上一层
  5. 回到第三次调用 backtracing(nums, 2, used):

    • 当前子集 res = {1, 2}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}}

    回溯:

    • res.pop_back() -> res = {1}
    • used[1] = false

    循环2(i = 2):

    • nums[2] = 2 未使用,且 nums[2] == nums[1],但 used[1] == false,跳过
    • 返回上一层
  6. 回到第二次调用 backtracing(nums, 1, used):

    • 当前子集 res = {1}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}}

    回溯:

    • res.pop_back() -> res = {}
    • used[0] = false

    循环2(i = 1):

    • nums[1] = 2 未使用
    • res.push_back(2) -> res = {2}
    • used[1] = true
    • 调用 backtracing(nums, 2, used)
  7. 第五次调用 backtracing(nums, 2, used):

    • index = 2
    • 当前子集 res = {2}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}, {2}}

    循环1(i = 2):

    • nums[2] = 2 未使用
    • res.push_back(2) -> res = {2, 2}
    • used[2] = true
    • 调用 backtracing(nums, 3, used)
  8. 第六次调用 backtracing(nums, 3, used):

    • index = 3
    • 当前子集 res = {2, 2}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}, {2}, {2, 2}}
    • 结束条件 index >= nums.size() 达成,返回上一层

    回溯:

    • res.pop_back() -> res = {2}
    • used[2] = false
    • 返回上一层
  9. 回到第五次调用 backtracing(nums, 2, used):

    • 当前子集 res = {2}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}, {2}, {2, 2}}

    回溯:

    • res.pop_back() -> res = {}
    • used[1] = false
    • 返回上一层
  10. 回到第一次调用 backtracing(nums, 0, used):

    • 当前子集 res = {}
    • 当前结果 result = {{}, {1}, {1, 2}, {1, 2, 2}, {2}, {2, 2}}

    循环3(i = 2):

    • nums[2] = 2 未使用,且 nums[2] == nums[1],但 used[1] == false,跳过
  11. 结束

力扣是一个在线编程平台,提供了大量的算法题目,可以帮助程序员提高算法能力。回溯算法是一种搜索算法,它通过不断地尝试所有可能的解来求解问题。在回溯算法中,我们首先定义一个解空间,然后从解空间中搜索所有可能的解,直到找到符合要求的解为止。回溯算法通常用于求解组合问题、排列问题、子集问题等。 在 Java 中实现回溯算法,通常需要定义一个递归函数来搜索解空间。在递归函数中,我们首先判断当前状态是否符合要求,如果符合要求,则将当前状态加入到解集中;否则,我们继续搜索下一个状态。在搜索下一个状态时,我们需要对当前状态进行一些修改,然后递归调用自身来搜索下一个状态。当搜索完所有可能的状态后,我们需要回溯到上一个状态,继续搜索其他可能的状态。 以下是回溯算法的一般步骤: 1. 定义解空间:确定问题的解空间,并定义一个数据结构来表示解空间中的每个状态。 2. 确定约束条件:确定哪些状态是合法的,并定义一个函数来判断当前状态是否符合要求。 3. 确定搜索策略:确定搜索解空间的顺序,并定义一个函数来生成下一个状态。 4. 搜索解空间:使用递归函数搜索解空间,如果当前状态符合要求,则将其加入到解集中;否则,继续搜索下一个状态。 5. 回溯:当搜索完所有可能的状态后,回溯到上一个状态,继续搜索其他可能的状态。 以下是一个力扣题目的回溯算法 Java 实现示例: ``` class Solution { List<List<Integer>> res = new ArrayList<>(); List<Integer> path = new ArrayList<>(); public List<List<Integer>> subsets(int[] nums) { dfs(nums, 0); return res; } private void dfs(int[] nums, int start) { res.add(new ArrayList<>(path)); for (int i = start; i < nums.length; i++) { path.add(nums[i]); dfs(nums, i + 1); path.remove(path.size() - 1); } } } ``` 该算法用于求解给定数组的所有子集。在递归函数中,我们首先将当前状态加入到解集中,然后从当前位置开始搜索下一个状态。在搜索下一个状态时,我们将当前元素加入到路径中,并递归调用自身来搜索下一个状态。当搜索完所有可能的状态后,我们需要回溯到上一个状态,继续搜索其他可能的状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清酒。233

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值