根据前面的博客我们应该已经知道了center point的模型基本结构与运行流程,前面讲到第一阶段的检测结构,这篇博客将介绍第二阶段的检测。
1、特征提取bird_eye_view
第一阶段经过了 SpMiddleResNetFHD、RPN(Region Proposal Network)、 CenterHead之后,将成的特征作为第二阶段的输入,使用 BEVFeatureExtractor 模块提取 BEV 特征。
位置:CenterPoint-master\det3d\models\second_stage\bird_eye_view.py
代码:
class BEVFeatureExtractor(nn.Module):
def __init__(self, pc_start,
voxel_size, out_stride):
super().__init__(
self.pc_start = pc_start
self.voxel_size = voxel_size
self.out_stride = out_stride
def absl_to_relative(self, absolute):
a1 = (absolute[..., 0] - self.pc_start[0]) / self.voxel_size[0] / self.out_stride
a2 = (absolute[..., 1] - self.pc_start[1]) / self.voxel_size[1] / self.out_stride
return a1, a2
def forward(self, example, batch_centers, num_point):
batch_size = len(example['bev_feature'])
ret_maps = []
for batch_idx in range(batch_size):
xs, ys = self.absl_to_relative(batch_centers[batch_idx])
# N x C
feature_map = bilinear_interpolate_torch(example['bev_feature'][batch_idx],
xs, ys)
if num_point > 1:
section_size = len(feature_map) // num_point
feature_map = torch.cat([feature_map[i*section_size: (i+1)*section_size] for i in range(num_point)], dim=1)
ret_maps.append(feature_map)
return ret_maps
这一部分的代码比较简单,很容易就能看明白。建议大家还是从前向传播函数来看。
作用:用于提取基于 BEV(Bird's Eye View,鸟瞰图)的特征,返回 ret_maps,即每个批次中每个中心坐标附近的特征图列表。BEVFeatureExtractor 接受第一阶段检测器的输出作为输入,同时接受中心坐标和采样点数作为参数,生成中心坐标附近的特征图。
2、第二阶段检测器RoIHead
Center point使用 RoIHead 作为第二阶段的检测器,输入特征包括 BEV 特征和其他信息,同时也使用 RoIHead 对提取的特征图进行分类和回归,生成最终的检测结果。
位置:CenterPoint-master\det3d\models\roi_heads\roi_head.py
代码:
class RoIHead(RoIHeadTemplate):
def __init__(self, input_channels, model_cfg, num_class=1, code_size=7, add_box_param=False, test_cfg=None):
super().__init__(num_class=num_class, model_cfg=model_cfg)
self.model_cfg = model_cfg
self.test_cfg = test_cfg
self.code_size = code_size
self.add_box_param = add_box_param
pre_channel = input_channels
shared_fc_list = []
for k in range(0, self.model_cfg.SHARED_FC.__len__()):
shared_fc_list.extend([
nn.Conv1d(pre_channel, self.model_cfg.SHARED_FC[k], kernel_size=1, bias=False),
nn.BatchNorm1d(self.model_cfg.SHARED_FC[k]),
nn.ReLU()
])
pre_channel = self.model_cfg.SHARED_FC[k]
if k != self.model_cfg.SHARED_FC.__len__() - 1 and self.model_cfg.DP_RATIO > 0:
shared_fc_list.append(nn.Dropout(self.model_cfg.DP_RATIO))
self.shared_fc_layer = nn.Sequential(*shared_fc_list)
self.cls_layers = self.make_fc_layers(
input_channels=pre_channel, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC
)
self.reg_layers = self.make_fc_layers(
input_channels=pre_channel,
output_channels=code_size,
fc_list=self.model_cfg.REG_FC
)
self.init_weights(weight_init='xavier')
def init_weights(self, weight_init='xavier'):
if weight_init == 'kaiming':
init_func = nn.init.kaiming_normal_
elif weight_init == 'xavier':
init_func = nn.init.xavier_normal_
elif weight_init == 'normal':
init_func = nn.init.normal_
else:
raise NotImplementedError
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
if weight_init == 'normal':
init_func(m.weight, mean=0, std=0.001)
else:
init_func(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001)
def forward(self, batch_dict, training=True):
"""
:param input_data: input dict
:return:
"""
batch_dict['batch_size'] = len(batch_dict['rois'])
if training:
targets_dict = self.assign_targets(batch_dict)
batch_dict['rois'] = targets_dict['rois']
batch_dict['roi_labels'] = targets_dict['roi_labels']
batch_dict['roi_features'] = targets_dict['roi_features']
batch_dict['roi_scores'] = targets_dict['roi_scores']
# RoI aware pooling
if self.add_box_param:
batch_dict['roi_features'] = torch.cat([batch_dict['roi_features'], batch_dict['rois'], batch_dict['roi_scores'].unsqueeze(-1)], dim=-1)
pooled_features = batch_dict['roi_features'].reshape(-1, 1,
batch_dict['roi_features'].shape[-1]).contiguous() # (BxN, 1, C)
batch_size_rcnn = pooled_features.shape[0]
pooled_features = pooled_features.permute(0, 2, 1).contiguous() # (BxN, C, 1)
shared_features = self.shared_fc_layer(pooled_features.view(batch_size_rcnn, -1, 1))
rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2)
rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C)
if not training:
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
)
batch_dict['batch_cls_preds'] = batch_cls_preds
batch_dict['batch_box_preds'] = batch_box_preds
batch_dict['cls_preds_normalized'] = False
else:
targets_dict['rcnn_cls'] = rcnn_cls
targets_dict['rcnn_reg'] = rcnn_reg
self.forward_ret_dict = targets_dict
return batch_dict
注:center point的运行并不是只涉及到我所理出来的代码哦,还有很多其他的代码。比如这个代码,第一行可以知道class RoIHead(RoIHeadTemplate),它是继承自RoIHeadTemplate这个类的,而这个类的代码位置在:CenterPoint-master\det3d\models\roi_heads\roi_head_template.py所以大家如果想要更加深入的理解代码还是要仔细得看代码,我这里只是给大家提供一个运行的思路方便大家去有目标顺序的看代码。
作用:定义了一个 RoI 池化头部(RoIHead)的类,用于在目标检测任务中对区域提议(RoIs)进行分类和回归,以生成最终的检测结果。这里还涉及到损失值的计算与定义,不过多赘述。
以上,就是centerpoint源码的以nusc_two_stage_base_with_virtual.py作为配置文件的详细运行流程,具体代码内容还需要大家仔细的去理解。
下一篇博客我将会去学习center point的损失函数。