目录
Leecode 62.不同路径
题目地址:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
题目类型:基础动态规划
class Solution {
public:
int uniquePaths(int m, int n) {
// 代表到达第(i,j)个点的路径个数 (0,0)为开始点,路径数为1,且第一行和第一列均为1
vector<vector<int>> dp(m, vector<int>(n, 1));
// 状态转移方程为:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
Leecode 63.不同路径 II
题目地址:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
题目类型:基础动态规划
可以原地DP,从而空间优化
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid[0][0] == 1) return 0;
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
// 代表到达(i, j)的路径数目,若某一个点是障碍,则为0
for (int i = 0; i < m; ++i) {
if (obstacleGrid[i][0] == 1) {
for (int j = i; j < m; ++j) obstacleGrid[j][0] = 0;
break;
}
else obstacleGrid[i][0] = 1;
}
for (int i = 1; i < n; ++i) {
if (obstacleGrid[0][i] == 1) {
for (int j = i; j < n; ++j) obstacleGrid[0][j] = 0;
break;
}
else obstacleGrid[0][i] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (obstacleGrid[i][j] == 1) obstacleGrid[i][j] = 0;
else obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
}
}
return obstacleGrid[m - 1][n - 1];
}
};