路径规划——RRT*算法

路径规划——RRT*算法

算法原理

RRT Star 算法是一种渐近最优的路径规划算法,它是 RRT 算法的优化版本。RRT Star 算法通过不断地迭代和优化,最终可以得到一条从起点到目标点的最优路径。
在学习RRT Star 算法之前最好先学习一下RRT原始算法:RRT算法
与RRT 算法相比,RRT Star 算法的主要不同之处在于它对已构建的路径进行优化,以提高搜索效率和精度。RRT Star算法与RRT算法的区别主要在于重新选择父节点和重新布线两个方面。

1.重新选择父节点过程

在新产生的节点node_new附近以定义的半径范围内寻找“近邻”,作为替换父节点的备选。依次计算“近邻”节点到起点的路径代价加上到每个“近邻”的路径代价,具体过程如下图:

在这里插入图片描述

在上图中的这种情况下,以节点4作为node_new节点的父节点时路径代价是最小的,因此当前随机树的结构无需改动。

如果是下图的情况:
在这里插入图片描述

此时,以节点6作为node_new节点的父节点时的路径代价是最小的,因此进行随机树结构改动为如下图所示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨小古

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值