路径规划——RRT*算法
算法原理
RRT Star 算法是一种渐近最优的路径规划算法,它是 RRT 算法的优化版本。RRT Star 算法通过不断地迭代和优化,最终可以得到一条从起点到目标点的最优路径。
在学习RRT Star 算法之前最好先学习一下RRT原始算法:RRT算法
与RRT 算法相比,RRT Star 算法的主要不同之处在于它对已构建的路径进行优化,以提高搜索效率和精度。RRT Star算法与RRT算法的区别主要在于重新选择父节点和重新布线两个方面。
1.重新选择父节点过程
在新产生的节点node_new附近以定义的半径范围内寻找“近邻”,作为替换父节点的备选。依次计算“近邻”节点到起点的路径代价加上到每个“近邻”的路径代价,具体过程如下图:
在上图中的这种情况下,以节点4作为node_new节点的父节点时路径代价是最小的,因此当前随机树的结构无需改动。
如果是下图的情况:
此时,以节点6作为node_new节点的父节点时的路径代价是最小的,因此进行随机树结构改动为如下图所示