机器学习之数据归一化(Feature Scaling)

数据归一化的原因

如下图所示:
在这里插入图片描述

样本间的距离被发现时间所主导。这样就会使数据不准确,因此我们的解决方案就是将所有的数据映射到同一尺寸,接下来我们介绍两种方法。

最值归一化(normalization)

定义:把所有数据映射到0-1之间。
在这里插入图片描述
注:适用于分布有明显边界的情况,但是受outlier影响较大。
代码:

import numpy as np
import matplotlib.pyplot as plt
X = np.random.randint(0, 100, (50, 2))
X = np.array(X, dtype = float)
X[:,0] = (X[:,0] - np
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天一道题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值