一、线性判别分析简介
1.简介
线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的有监督数据降维方法。
LDA的主要思想是将一个高维空间中的数据投影到一个较低维的空间中,且投影后要保证各个类别的类内方差小而类间均值差别大,这意味着同一类的高维数据投影到低维空间后相同类别的聚在一起,而不同类别之间相距较远。
线性判别分析思想:给定训练样本集,设法将样例投影到一条直线上。使得同类样例的投影点尽可能接近、异类样例的投影点尽可能远;在对新样本进行分类时,将其投影到该直线上,再根据投影点的位置来确定新样本的类别。
2.编程生成模拟数据集,进行LDA算法练习
LDA算法
线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。
3.用sklearn库进行线性判别分析
(1)采用随机数据集,导入包
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as lda#导入LDA算法
from sklearn.datasets._samples_generator import make_classification #导入分类生成器
import matplotlib.pyplot as plt #导入画图用的工具
import numpy as np
import pandas as pd
(2)产生随机数据
x,y=make_classification(n_samples=200,n_features=2,n_redundant=0,n_classes=2,n_informative=1,n_clusters_per_class=1,class_sep=0.5,random_state=100)
"""
n_features :特征个数= n_informative() + n_redundant + n_repeated
n_informative:多信息特征的个数
n_redundant:冗余信息,informative特征的随机线性组合
n_repeated :重复信息,随机提取n_informative和n_redundant 特征
n_classes:分类类别
n_clusters_per_class :某一个类别是由几个cluster构成的
"""
plt.scatter(x[:,0],x[:,1], marker='o', c=y)
plt.show()
x_train=x[:60, :60]
y_train=y[:60]
x_test=x[40:, :]
y_test=y[40:]
(3) 将数据集分为训练集和测试集,训练完之后利用测试集获得准确率
#分为训练集和测试集,进行模型训练并测试
x_train=x[:150, :150]
y_train=y[:150]
x_test=x[50:, :]
y_test=y[50:]
lda_test=lda()
lda_test.fit(x_train,y_train)
predict_y=lda_test.predict(x_test)#获取预测的结果
count=0
for i in range(len(predict_y)):
if predict_y[i]==y_test[i]:
count+=1
print("预测准确个数为"+str(count))
print("准确率为"+str(count/len(predict_y)))
二、SVM
1. 简介
(1)SVM(支持向量机)主要用于分类问题,主要的应用场景有字符识别、面部识别、行人检测、文本分类等领域。
(2)通常SVM用于二元分类问题,对于多元分类通常将其分解为多个二元分类问题,再进行分类。
2.SVM数据集进行可视化分类
(1)处理月亮数据集
# 导入月亮数据集和svm方法
#这是线性svm
from sklearn import datasets #导入数据集
from sklearn.svm import LinearSVC #导入线性svm
from matplotlib.colors import ListedColormap
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt #导入画图用的工具
# 获得数据集
data_x,data_y=datasets.make_moons(noise=0.15,random_state=777)#生成月亮数据集
# random_state是随机种子,nosie是方
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
data_x=data_x[data_y<2,:2]#只取data_y小于2的类别,并且只取前两个特征
plt.show()
续写代码:
#进行标准化并训练数据
scaler=StandardScaler()# 标准化
scaler.fit(data_x)#计算训练数据的均值和方差
data_x=scaler.transform(data_x) #再用scaler中的均值和方差来转换X,使X标准化
liner_svc=LinearSVC(C=1e9,max_iter=100000)#线性svm分类器,iter是迭达次数,c值决定的是容错,c越大,容错越小
liner_svc.fit(data_x,data_y)
# 边界绘制函数,为下面可视化分类做准备
def plot_decision_boundary(model,axis):
x0,x1=np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))
# meshgrid函数是从坐标向量中返回坐标矩阵
x_new=np.c_[x0.ravel(),x1.ravel()]
y_predict=model.predict(x_new)#获取预测值
zz=y_predict.reshape(x0.shape)
custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
plt.contourf(x0,x1,zz,cmap=custom_cmap)
#画图并输出参数权重和模型截距
plot_decision_boundary(liner_svc,axis=[-3,3,-3,3])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()
print('参数权重')
print(liner_svc.coef_)
print('模型截距')
print(liner_svc.intercept_)
(3)使用核函数处理月亮数据集
from sklearn.svm import SVC
def PolynomialKernelSVC(degree,C=1.0):
return Pipeline([ ("std_scaler",StandardScaler()), ("kernelSVC",SVC(kernel="poly")) # poly代表多项式特征
])
poly_kernel_svc = PolynomialKernelSVC(degree=3)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
(4)使用高斯核函数处理月亮数据集
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
def RBFKernelSVC(gamma=1.0):
return Pipeline([ ('std_scaler',StandardScaler()), ('svc',SVC(kernel='rbf',gamma=gamma)) ])
svc = RBFKernelSVC()
svc.fit(X,y)
plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
将gamma=10:
gamma=100:
可以发现gamma过大,出现了过拟合,只有gamma适当时,才有最优的的模型。
(5)使用多项式特征处理月亮数据集
polynomial_svm_clf = Pipeline([
# 将源数据 映射到 3阶多项式
("poly_features", PolynomialFeatures(degree=3)),
# 标准化
("scaler", StandardScaler()),
# SVC线性分类器
("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
])
polynomial_svm_clf.fit(X, y)
def plot_predictions(clf, axes):#绘制图形
# 打表
x0s = np.linspace(axes[0], axes[1], 100)
x1s = np.linspace(axes[2], axes[3], 100)
x0, x1 = np.meshgrid(x0s, x1s)
X = np.c_[x0.ravel(), x1.ravel()]
y_pred = clf.predict(X).reshape(x0.shape)
y_decision = clf.decision_function(X).reshape(x0.shape)
# print(y_pred)
# print(y_decision)
plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)
plot_predictions(polynomial_svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()
改变参数C再次运行(此处设置C的值分别为0.001,1,1000,1000000)
from sklearn.svm import SVC
gamma1, gamma2 = 0.1, 5
C1, C2, C3, C4 = 0.001,1, 1000,1000000#设置C的大小,此处设置了4组
hyperparams = (gamma1, C1), (gamma1, C2),(gamma1, C3), (gamma1, C4)
svm_clfs = []
for gamma, C in hyperparams:
rbf_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="rbf", gamma=gamma, C=C))
])
rbf_kernel_svm_clf.fit(X, y)
svm_clfs.append(rbf_kernel_svm_clf)
plt.figure(figsize=(11, 7))
for i, svm_clf in enumerate(svm_clfs):
plt.subplot(221 + i)
plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
gamma, C = hyperparams[i]
plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=16)
plt.tight_layout()
plt.show()
这里的C是一个大于0的数,可以理解为错误样本的惩罚程度,若 C 为无穷大,线性 SVM 就变成了线性可分 SVM;当 C 为有限值的时候,才会允许部分样本不遵循约束条件。
三、总结
该实验主要是学习线性判别准则(LDA)和线性分类算法(支持向量机,SVM),然后编程生成模拟数据集,进行LDA算法练习。对月亮数据集进行SVM分类,分别采用线性核、多项式核和高斯核以及不同的参数(比如惩罚系数C)。
四、参考链接
https://blog.youkuaiyun.com/YouthBlood9/article/details/121096113?
https://blog.youkuaiyun.com/qq_45659777/article/details/121034306?
https://blog.youkuaiyun.com/ruthywei/article/details/83045288
https://blog.youkuaiyun.com/sinat_20177327/article/details/79729551