隔离森林找到离群值的方法是,对数据进行连续区分,直至某个数据点被隔离。
1)加载数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest
from mpl_toolkits.mplot3d import Axes3D
pd.set_option('display.float_format', lambda x: '%.2f' % x)
covidtototals=pd.read_csv(r"D:\日常文档\笔记\泰坦尼克号数据\covidtotals.csv")
covidtototals.set_index("iso_code", inplace=True)
covidtototals.head()
2)创建一个标准化的分析DataFrame.
首先删除所有包含缺失值的行
analysisvars = ['location','total_cases_pm','total_deaths_pm','pop_density','median_age','gdp_per_capita']
standardizer = StandardScaler()
covidtotals.isnull().sum()