LMDeploy 量化部署实践

参考Tutorial/docs/L2/LMDeploy at camp4 · InternLM/Tutorialicon-default.png?t=O83Ahttps://github.com/InternLM/Tutorial/tree/camp4/docs/L2/LMDeploy

1 配置LMDeploy环境

1.1 InternStudio开发机创建与环境搭建

打开InternStudio平台,进入如下界面并按箭头指示顺序点击创建开发机

点选开发机,自拟一个开发机名称,选择Cuda12.2-conda镜像。

我们要运行参数量为7B的InternLM2.5,由InternLM2.5的码仓查询InternLM2.5-7b-chat的config.json文件可知,该模型的权重被存储为bfloat16格式

对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:

7×10^9 parameters×2 Bytes/parameter=14GB

70亿个参数×每个参数占用2个字节=14GB

所以我们需要大于14GB的显存,选择 30%A100*1(24GB显存容量),后选择立即创建,等状态栏变成运行中,点击进入开发机,我们即可开始部署。

在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。

 

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

pip install datasets==2.19.2

1.2 InternStudio环境获取模型

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

此时,我们可以看到/root/models中会出现internlm2_5-7b-chat、internlm2_5-1_8b-chat和InternVL2-26B文件夹。

教程使用internlm2_5-7b-chat和InternVL2-26B作为演示。由于上述模型量化会消耗大量时间(约8h),量化作业请使用internlm2_5-1_8b-chat模型完成。

1.3 LMDeploy验证启动模型文件

在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动internlm2_5-1_8b-chat

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

稍待片刻,启动成功后,会显示如下。

此时,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。

不知道有没有小伙伴注意到屏幕右上角,这是InternStudio提供的资源监控。

如果选择 50%A100*1 建立机器,同样运行InternLM2.5 7B模型,会发现此时显存占用为36GB

那么这是为什么呢?由上文可知InternLM2.5 7B模型为bf16,LMDpeloy推理精度为bf16的7B模型权重需要占用14GB显存;如下图所示,lmdeploy默认设置cache-max-entry-count为0.8,即kv cache占用剩余显存的80%;

此时对于24GB的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB

而对于40GB的显卡,即50%A100,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB

实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB34.8GB

此外,如果想要实现显存资源的监控,我们也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况。

nvidia-smi 
studio-smi 

 注释:实验室提供的环境为虚拟化的显存,nvidia-smi是NVIDIA GPU驱动程序的一部分,用于显示NVIDIA GPU的当前状态,故当前环境只能看80GB单卡 A100 显存使用情况,无法观测虚拟化后30%或50%A100等的显存情况。针对于此,实验室提供了studio-smi 命令工具,能够观测到虚拟化后的显存使用情况。

2 LMDeploy与InternLM2.5

2.1 LMDeploy API部署InternLM2.5

在上一章节,我们直接在本地部署InternLM2.5。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。

2.1.1 启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

命令解释:

  1. lmdeploy serve api_server:这个命令用于启动API服务器。
  2. /root/models/internlm2_5-7b-chat:这是模型的路径。
  3. --model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
  4. --quant-policy 0:这个参数指定了量化策略。
  5. --server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
  6. --server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
  7. --tp 1:这个参数表示并行数量(GPU数量)。

这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:

 ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

 然后打开浏览器,访问http://127.0.0.1:23333看到如下界面即代表部署成功。

 

 

2.1.2 以命令行形式连接API服务器

关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,新建一个终端,

 conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。

 

2.1.3 以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

稍待片刻,等终端如下图所示便保持两个终端不动。

关闭之前的cmd/powershell窗口,重开一个,再次做一下ssh转发(因为此时端口不同)。在你本地打开一个cmd或powershell窗口,输入命令如下。

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了。

 2.2 LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

2.2.1 设置最大kv cache缓存大小

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

首先我们先来回顾一下InternLM2.5正常运行时占用显存。

占用了23GB,那么试一试执行以下命令,再来观看占用显存情况。

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

稍待片刻,观测显存占用情况,可以看到减少了约4GB的显存。

 

让我们计算一下4GB显存的减少缘何而来,

对于修改kv cache默认占用之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB

3、其他项1GB

是故23GB=权重占用14GB+kv cache占用8GB+其它项1GB

对于修改kv cache占用之后的显存占用情况(19GB):

1、与上述声明一致,在 BF16 精度下,7B模型权重占用14GB

2、kv cache占用4GB:剩余显存24-14=10GB,kv cache修改为占用40%,即10*0.4=4GB

3、其他项1GB

是故19GB=权重占用14GB+kv cache占用4GB+其它项1GB

而此刻减少的4GB显存占用就是从10GB*0.8-10GB*0.4=4GB,这里计算得来。

2.2.2 设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。

 我们通过2.1 LMDeploy API部署InternLM2.5的实践为例,输入以下指令,启动API服务器。

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

 

想要和此时的模型对话的话可以回顾2.1.2 以命令行形式连接API服务器或者2.1.3 以Gradio网页形式连接API服务器的内容自行对话,步骤完全一致,本章主要观测显存状态。

可以看到此时显存占用约19GB,相较于1.3 LMDeploy验证启动模型文件直接启动模型的显存占用情况(23GB)减少了4GB的占用。此时4GB显存的减少逻辑与2.2.1 设置最大kv cache缓存大小中4GB显存的减少一致,均因设置kv cache占用参数cache-max-entry-count至0.4而减少了4GB显存占用。

 

 

那么本节中19GB的显存占用与2.2.1 设置最大kv cache缓存大小19GB的显存占用区别何在呢?

由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。

相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。

2.2.3 W4A16 模型量化和部署

准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

那么标题中的W4A16又是什么意思呢?

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

因此,W4A16的量化配置意味着:

  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。

让我们回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。(不建议运行,在InternStudio上运行需要8小时)

lmdeploy lite auto_awq \
   /root/models/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit

 

完成作业时请使用1.8B模型进行量化:(建议运行以下命令)

lmdeploy lite auto_awq \
   /root/models/internlm2_5-1_8b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit

 

命令解释:

  1. lmdeploy lite auto_awqlite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
  2. /root/models/internlm2_5-7b-chat: 模型文件的路径。
  3. --calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
  4. --calib-samples 128: 这指定了用于校准的样本数量—128个样本
  5. --calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
  6. --w-bits 4: 这表示权重(weights)的位数将被量化为4位。
  7. --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

等终端输出如下时,说明正在推理中,稍待片刻。

 

如果此处出现报错:TypeError: 'NoneType' object is not callable,原因是 当前版本的 datasets3.0 无法下载calibrate数据集 在命令前加一行 pip install datasets==2.19.2 可以解决

等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。

那么推理后的模型和原本的模型区别在哪里呢?最明显的两点是模型文件大小以及占据显存大小。

我们可以输入如下指令查看在当前目录中显示所有子目录的大小。

cd /root/models/
du -sh *

输出结果如下。(其余文件夹都是以软链接的形式存在的,不占用空间,故显示为0)

那么原模型大小呢?输入以下指令查看。

cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

一经对比即可发觉,15G对4.9G,优势在我。 

那么显存占用情况对比呢?输入以下指令启动量化后的模型。

lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

稍待片刻,我们直接观测右上角的显存占用情况。

可以发现,相比较于原先的23GB显存占用,W4A16量化后的模型少了约2GB的显存占用。

让我们计算一下2GB显存的减少缘何而来。

对于W4A16量化之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB

3、其他项1GB

是故23GB=权重占用14GB+kv cache占用8GB+其它项1GB

而对于W4A16量化之后的显存占用情况(20.9GB):

1、在 int4 精度下,7B模型权重占用3.5GB14/4=3.5GB

注释:

  • bfloat16是16位的浮点数格式,占用2字节(16位)的存储空间。int4是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16int4的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4参数仅占用3.5GB的显存

2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache默认占用80%,即20.5*0.8=16.4GB

3、其他项1GB

是故20.9GB=权重占用3.5GB+kv cache占用16.4GB+其它项1GB

2.2.4 W4A16 量化+ KV cache+KV cache 量化

我知道你们肯定有人在想,介绍了那么多方法,能不能全都要?当然可以!

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

此时显存占用11.4GB

想要更极限且保证正常工作的量化设置的话,各位小伙伴可以之后自行探索.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值