LMDeploy 量化部署实践闯关任务
环境配置
conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3
pip install datasets==2.19.2
创建文件夹并设置开发机共享目录的软链接。
mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models
启动InternLM2_5-1_8b-chat
lmdeploy chat /root/models/internlm2_5-1_8b-chat
API部署
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
以命令行形式连接API服务器
关闭http://127.0.0.1:23333
网页,但保持终端和本地窗口不动,新建一个终端。
以Gradio网页形式连接API服务器
lmdeploy serve gradio http://localhost:23333 \
--server-name 0.0.0.0 \
--server-port 6006
W4A16 量化+ KV cache+KV cache 量化
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
原模型
量化后
量化后做kv cache
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
Function call
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
touch /root/internlm2_5_func.py
from openai import OpenAI
def add(a: int, b: int):
return a + b
def mul