【国科大现代控制理论】第六章作业

目录

第1题

image-20241202193024066


对于题目中给定的线性定成系统,记系统矩阵 A = [ 0 1 0 0 ] A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] A=[0010],输入矩阵 B = [ 0 1 ] B=\left[\begin{array}{l}0 \\ 1\end{array}\right] B=[01],输出矩阵 C = [ 1 0 ] C=\left[\begin{array}{ll}1 & 0]\end{array}\right. C=[10]

已知其全阶观测器的特征值为 λ 1 = − 2 , λ 2 = − 4 \lambda_1=-2, \lambda_2=-4 λ1=2,λ2=4,那么期望的观测器特征多项式为:
f ∗ ( s ) = ( s + 2 ) ( s + 4 ) = s 2 + 6 s + 8 f^*(s)=(s+2)(s+4)=s^2+6 s+8 f(s)=(s+2)(s+4)=s2+6s+8
在设计全阶观测器时,需要计算增益矩阵 L = [ l 1 l 2 ] L=\left[\begin{array}{l}l_1 \\ l_2\end{array}\right] L=[l1l2],已知原系统的特征多项式为:
∣ s I − A ∣ = ∣ s − 1 0 s ∣ = s 2 |s I-A|=\left|\begin{array}{cc} s & -1 \\ 0 & s \end{array}\right|=s^2 sIA= s01s =s2
可构造矩阵 A − L C A-LC ALC为:
A − L C = [ 0 1 0 0 ] − [ l 1 l 2 ] [ 1 0 ] = [ − l 1 1 − l 2 0 ] \begin{aligned} A-L C & =\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right]-\left[\begin{array}{l} l_1 \\ l_2 \end{array}\right]\left[\begin{array}{ll} 1 & 0 \end{array}\right] \\ & =\left[\begin{array}{ll} -l_1 & 1 \\ -l_2 & 0 \end{array}\right] \end{aligned} ALC=[0010][l1l2][10]=[l1l210]
故其特征多项式为:
f ( s ) = ∣ s I − ( A − L C ) ∣ = s 2 + l 1 s + l 2 f(s)=|s I-(A-L C)|=s^2+l_1 s+l_2 f(s)=sI(ALC)=s2+l1s+l2
f ( s ) = f ∗ ( s ) f(s)=f^*(s) f(s)=f(s)可得:
s 2 + l 1 s + l 2 = s 2 + 6 s + 8 s^2+l_1 s+l_2=s^2+6 s+8 s2+l1s+l2=s2+6s+8
解得 l 1 = 6 , l 2 = 8 l_1=6, l_2=8 l1=6,l2=8,所以 L = [ 6 8 ] L=\left[\begin{array}{l}6 \\ 8\end{array}\right] L=[68]。那么全阶观测器的方程形式为:
x ^ ^ ˙ = ( A − L C ) x ^ + B u + L y \dot{\hat{\hat{x}}}=(A-L C) \hat{x}+B u+L y x^^˙=(ALC)x^+Bu+Ly
A , B , C , L A,B,C,L A,B,C,L带入可得:
x ^ ˙ = ( [ 0 1 0 0 ] − [ 6 8 ] [ 1 0 ] ) x ^ + [ 0 1 ] u + [ 6 8 ] y = [ − 6 1 − 8 0 ] x ^ + [ 0 1 ] u + [ 6 8 ] y \begin{aligned} \dot{\hat{x}} & =\left(\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right]-\left[\begin{array}{l} 6 \\ 8 \end{array}\right]\left[\begin{array}{ll} 1 & 0 \end{array}\right]\right) \hat{x}+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u+\left[\begin{array}{l} 6 \\ 8 \end{array}\right] y \\ & =\left[\begin{array}{ll} -6 & 1 \\ -8 & 0 \end{array}\right] \hat{x}+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u+\left[\begin{array}{l} 6 \\ 8 \end{array}\right] y \end{aligned} x^˙=([0010][68][10])x^+[01]u+[68]y=[6810]x^+[01]u+[68]y
z = x ^ z=\hat{x} z=x^,则全阶观测器的表达式为:

{ z ˙ = [ − 6 1 − 8 0 ] z + [ 0 1 ] u + [ 6 8 ] y , x ^ = z . \left\{\begin{array}{c} \dot{z}=\left[\begin{array}{ll} -6 & 1 \\ -8 & 0 \end{array}\right] z+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u+\left[\begin{array}{l} 6 \\ 8 \end{array}\right] y, \\ \hat{x}=z . \end{array}\right. z˙=[6810]z+[01]u+[68]y,x^=z.

第6题

image-20241202193100576


(1)题解答

给定单输入-单输出系统的传递函数为:
G ( s ) = 1 s ( s + 1 ) ( s + 2 ) G(s)=\frac{1}{s(s+1)(s+2)} G(s)=s(s+1)(s+2)1
先将该三阶系统对应的传递函数转化为状态空间表示:
A = [ 0 1 0 0 0 1 − 2 − 3 − 4 ] , B = [ 0 0 1 ] , C = [ 1 0 0 ] , D = 0 A=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -4 \end{array}\right], \quad B=\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right], \quad C=\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right], \quad D=0 A= 002103014 ,B= 001 ,C=[100],D=0
在降维观测器的设计时,其维度比原系统小,同时确保观测器的特征值为 -5,假设降维观测器状态方程如下:
w ˙ ( t ) = A o w ( t ) + B o y ( t ) + C o u ( t ) x ^ ( t ) = C o w ( t ) \begin{gathered} \dot{w}(t)=A_o w(t)+B_o y(t)+C_o u(t) \\ \hat{x}(t)=C_o w(t) \end{gathered} w˙(t)=Aow(t)+Boy(t)+Cou(t)x^(t)=Cow(t)
由于需要观测器的特征值都为 -5。因此,矩阵 A o A_o Ao 的特征值需要是 -5,最后可得:
{ w ˙ = [ − 7 1 − 4 − 3 ] w + [ − 47 − 34 ] y + [ 0 1 ] u , x ^ = [ 1 7 2 ] y + [ 0 0 1 0 0 1 ] w . \left\{\begin{array}{c} \dot{w}=\left[\begin{array}{cc} -7 & 1 \\ -4 & -3 \end{array}\right] w+\left[\begin{array}{l} -47 \\ -34 \end{array}\right] y+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u, \\ \hat{x}=\left[\begin{array}{l} 1 \\ 7 \\ 2 \end{array}\right] y+\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right] w . \end{array}\right. w˙=[7413]w+[4734]y+[01]u,x^= 172 y+ 010001 w.

(2)题解答

给定单输入-单输出系统的传递函数为:
G ( s ) = 1 s ( s + 1 ) ( s + 2 ) G(s)=\frac{1}{s(s+1)(s+2)} G(s)=s(s+1)(s+2)1
先将该三阶系统对应的传递函数转化为状态空间表示:
A = [ 0 1 0 0 0 1 − 2 − 3 − 4 ] , B = [ 0 0 1 ] , C = [ 1 0 0 ] , D = 0 A=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -4 \end{array}\right], \quad B=\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right], \quad C=\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right], \quad D=0 A= 002103014 ,B= 001 ,C=[100],D=0
为估计系统的状态,设计一个降维观测器。该观测器的状态空间方程为:
w ˙ ( t ) = A o w ( t ) + B o y ( t ) + C o u ( t ) x ^ ( t ) = C o w ( t ) \begin{gathered} \dot{w}(t)=A_o w(t)+B_o y(t)+C_o u(t) \\ \hat{x}(t)=C_o w(t) \end{gathered} w˙(t)=Aow(t)+Boy(t)+Cou(t)x^(t)=Cow(t)
假设降维观测器的极点为 -5,根据第1题的结果,已知观测器的状态方程为:
A o = [ − 7 1 − 4 − 3 ] , B o = [ − 47 − 34 ] , C o = [ 1 7 2 ] A_o=\left[\begin{array}{cc} -7 & 1 \\ -4 & -3 \end{array}\right], \quad B_o=\left[\begin{array}{l} -47 \\ -34 \end{array}\right], \quad C_o=\left[\begin{array}{lll} 1 & 7 & 2 \end{array}\right] Ao=[7413],Bo=[4734],Co=[172]
设计一个使得闭环系统的极点满足给定要求的反馈律,输出反馈律为:
u ( t ) = − K x ^ ( t ) u(t)=-K \hat{x}(t) u(t)=Kx^(t)
为使其闭环系统传递函数的极点为 λ 1 = − 3 , λ 2 , 3 = − 1 2 ± 3 2 j \lambda_1=-3, \quad \lambda_{2,3}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} j λ1=3,λ2,3=21±23 j,采用极点配置的方法,记闭环系统的状态方程
x ˙ ( t ) = ( A − B K ) x ( t ) \dot{x}(t)=(A-B K) x(t) x˙(t)=(ABK)x(t)
展开该多项式后得到闭环系统的特征方程,然后通过求解该方程来确定反馈增益为

K = [ − 3 − 2 − 1 ] K=\left[\begin{array}{lll} -3 & -2 & -1] \end{array}\right. K=[321]

(3)题解答

前两题设计了基于降维观测器的输出动态反馈律,假设观测器的状态方程为:
w ˙ ( t ) = A o w ( t ) + B o y ( t ) + C o u ( t ) x ^ ( t ) = C o w ( t ) \begin{gathered} \dot{w}(t)=A_o w(t)+B_o y(t)+C_o u(t) \\ \hat{x}(t)=C_o w(t) \end{gathered} w˙(t)=Aow(t)+Boy(t)+Cou(t)x^(t)=Cow(t)
基于降维观测器的反馈律为 u ( t ) = − K x ^ ( t ) u(t)=-K \hat{x}(t) u(t)=Kx^(t),故该方程可进一步写成:
x ˙ ( t ) = ( A − B K ) x ( t ) − B K C o w ( t ) \dot{x}(t)=(A-B K) x(t)-B K C_o w(t) x˙(t)=(ABK)x(t)BKCow(t)
闭环传递函数 G c l ( s ) G_{cl}(s) Gcl(s)由以下公式给出:
G c l ( s ) = C ( s I − ( A − B K ) ) − 1 B G_{\mathrm{cl}}(s)=C(s I-(A-B K))^{-1} B Gcl(s)=C(sI(ABK))1B
将前面求得的反馈增益矩阵 K K K代入可得:
A − B K = [ 0 1 0 0 0 1 − 2 − 3 − 4 ] − [ 0 0 1 ] [ − 3 − 2 − 1 ] = [ 0 1 0 0 0 1 1 1 − 3 ] A-B K=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -4 \end{array}\right]-\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right]\left[\begin{array}{lll} -3 & -2 & -1 \end{array}\right] =\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -3 \end{array}\right] ABK= 002103014 001 [321]= 001101013
可知闭环系统的传递函数:
G c l ( s ) = [ 1 0 0 ] ( s I − [ 0 1 0 0 0 1 1 1 − 3 ] ) − 1 [ 0 0 1 ] G_{\mathrm{cl}}(s)=\left[\begin{array}{lll} 1 & 0 & 0 \end{array}\right]\left(s I-\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -3 \end{array}\right]\right)^{-1}\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right] Gcl(s)=[100] sI 001101013 1 001
最终可得闭环传递函数为:
G c l ( s ) = − 3 s 2 − 6 s − 6 s 3 + 3 s 2 + 2 s G_{\mathrm{cl}}(s)=\frac{-3 s^2-6 s-6}{s^3+3 s^2+2 s} Gcl(s)=s3+3s2+2s3s26s6

第7题

image-20241202193129048


设计观测器的状态方程为:
w ˙ = A o w + B o y + C o u x ^ = C o w \begin{gathered} \dot{w}=A_o w+B_o y+C_o u \\ \hat{x}=C_o w \end{gathered} w˙=Aow+Boy+Coux^=Cow
采用极点配置法设计观测器,根据给定的观测器极点,观测器的矩阵 A o A_o Ao B o B_o Bo 可以通过设计满足这些极点来确定。假设观测器的状态方程为:
w ˙ = A o w + B o y + C o u \dot{w}=A_o w+B_o y+C_o u w˙=Aow+Boy+Cou
可知观测器的矩阵为:
A o = [ − 9 − 1 0 36 0 1 84 5 0 ] , B o = [ − 45 408 576 ] , C o = [ 1 0 − 2 ] A_o=\left[\begin{array}{ccc} -9 & -1 & 0 \\ 36 & 0 & 1 \\ 84 & 5 & 0 \end{array}\right], \quad B_o=\left[\begin{array}{c} -45 \\ 408 \\ 576 \end{array}\right], \quad C_o=\left[\begin{array}{lll} 1 & 0 & -2 \end{array}\right] Ao= 93684105010 ,Bo= 45408576 ,Co=[102]
系统状态的估计或者说观测器的输出是状态 x ^ ( t ) \hat{x}(t) x^(t)。观测器的输出方程为:
x ^ = C o w \hat{x}=C_o w x^=Cow
故观测器的设计公式为:
x ^ = [ w + [ y − 36 − 84 ] ] + [ 0 0 0 1 0 0 0 1 0 0 0 1 ] w + [ 1 9 − 36 − 84 ] y \hat{x}=\left[w+\left[\begin{array}{c} y \\ -36 \\ -84 \end{array}\right]\right]+\left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] w+\left[\begin{array}{c} 1 \\ 9 \\ -36 \\ -84 \end{array}\right] y x^= w+ y3684 + 010000100001 w+ 193684 y
设计一个基于观测器的输出动态反馈控制器。输出动态反馈控制器为:
u ( t ) = − K x ^ ( t ) + v u(t)=-K \hat{x}(t)+v u(t)=Kx^(t)+v
由于指定 λ 1 = − 1 , λ 2 , 3 = − 1 ± j , λ 4 = − 2 \lambda_1=-1, \lambda_{2,3}=-1 \pm j, \lambda_4=-2 λ1=1,λ2,3=1±j,λ4=2,通过求解闭环系统的特征方程可以求出 K K K:
K = [ 4 3 10 3 49 6 25 6 ] K=\left[\begin{array}{llll} \frac{4}{3} & \frac{10}{3} & \frac{49}{6} & \frac{25}{6} \end{array}\right] K=[34310649625]
综上所述,观测器输出动态反馈系统为

{ w ˙ = [ − 9 − 1 0 36 0 1 84 5 0 ] w + [ − 45 408 576 ] y + [ 1 0 − 2 ] u , x ^ = [ y w + [ 9 − 36 − 84 ] ] + [ 0 0 0 1 0 0 0 1 0 0 0 1 ] w + [ 1 9 − 36 − 84 ] y , u = [ 4 3 10 3 49 6 25 6 ] x ^ + v . \left\{\begin{array}{c} \dot{w}=\left[\begin{array}{ccc} -9 & -1 & 0 \\ 36 & 0 & 1 \\ 84 & 5 & 0 \end{array}\right] w+\left[\begin{array}{c} -45 \\ 408 \\ 576 \end{array}\right] y+\left[\begin{array}{c} 1 \\ 0 \\ -2 \end{array}\right] u, \\ \hat{x}=\left[\begin{array}{c} y \\ w+\left[\begin{array}{c} 9 \\ -36 \\ -84 \end{array}\right] \end{array}\right]+\left[\begin{array}{lll} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] w+\left[\begin{array}{c} 1 \\ 9 \\ -36 \\ -84 \end{array}\right] y, \\ u=\left[\begin{array}{llll} \frac{4}{3} & \frac{10}{3} & \frac{49}{6} & \frac{25}{6} \end{array}\right] \hat{x}+v . \end{array}\right. w˙= 93684105010 w+ 45408576 y+ 102 u,x^= yw+ 93684 + 010000100001 w+ 193684 y,u=[34310649625]x^+v.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后厂村路小狗蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值