Linux系统构建完成后,就可以基于该环境方便地进行开发了,相关的开发流程与MCU类似,但是引入了设备树的概念,编写应用代码要相对复杂一点。但是省去了很多配置工作。
学习视频地址:【正点原子】STM32MP157开发板
字符设备驱动开发
驱动流程
在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx”(xxx 是具体的驱动文件名字)的文件进行相应的操作即可实现对硬件的操作。
比如现在有个叫做/dev/led 的驱动文件,此文件是 led 灯的驱动文件。
- open 函数来打开文件/dev/led,使用完成以后使用 close 函数关闭/dev/led 这个文件。 open和 close 就是打开和关闭 led 驱动的函数
- 点亮或关闭 led,那么就使用 write 函数来操作,也就是向此驱动写入数据,这个数据就是要关闭还是要打开 led 的控制参数
- 如果要获取led 灯的状态,就用 read 函数从驱动中读取相应的状态。
内核驱动函数及变量
owner:拥有该结构体的模块的指针变量, 一般设置为 THIS_MODULE
llseek:修改文件当前的读写位置
read:读取设备文件
write:向设备文件写入数据
poll:轮询函数,用于查询设备是否可以进行非阻塞的读写。
unlocked_ioctl:提供对于设备的控制功能,与应用程序中的 ioctl 函数对应
compat_ioctl:函数与 unlocked_ioctl 函数功能一样,区别在于在 64 位系统上,
32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。
mmap:用于将将设备的内存映射到进程空间中(也就是用户空间),一般帧
缓冲设备会使用此函数,比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。
open:打开设备文件
release:用于释放(关闭)设备文件,与应用程序中的 close 函数对应
fasync:用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中
驱动开发步骤
1. 驱动模块的加载和卸载
- 将驱动编译进Linux内核中,内核启动时就会自动运行驱动程序
- 将驱动编译为模块(Linux 下模块扩展名为.ko),Linux内核启动后采用modprobe指令加载模块。
module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数
2. 字符设备的注册与注销
字符设备的注册与注销放在模块的加载和卸载函数中。
// 只指定主设备号,会造成资源浪费
static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops)
static inline void unregister_chrdev(unsigned int major,const char *name)
// 用多少申请多少,比较合理
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)
int register_chrdev_region(dev_t from, unsigned count, const char *name)
void unregister_chrdev_region(dev_t from, unsigned count)
3. 类和设备的创建
这部分是为了设备可以自动创建和删除文件节点
// 类的创建和删除
struct class *class_create (struct module *owner, const char *name)
void class_destroy(struct class *cls)
// 设备的创建和删除
struct device *device_create(struct class *cls,struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...)
void device_destroy(struct class *cls, dev_t devt)
4. 实例代码
字符设备驱动
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#define CHRDEVBASE_MAJOR 100 /* 主设备号 */
#define CHRDEVBASE_NAME "devbase" /* 设备名 */
static char readbuf[100]; /* 读缓冲区 */
static char writebuf[100]; /* 写缓冲区 */
static char kerneldata[] = {"kernel data!"};
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int chrdevbase_open(struct inode *inode, struct file *filp)
{
printk("devbase open! \r\n");
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;
/* 向用户空间发送数据 */
memcpy(readbuf, kerneldata, sizeof(kerneldata));
retvalue = copy_to_user(buf, readbuf, cnt);
if(retvalue == 0){
printk("kernel senddata ok!\r\n");
}else{
printk("kernel senddata failed!\r\n");
}
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t chrdevbase_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;
/* 接收用户空间传递给内核的数据并且打印出来 */
retvalue = copy_from_user(writebuf, buf, cnt);
if(retvalue == 0){
printk("kernel recevdata:%s\r\n", writebuf);
}else{
printk("kernel recevdata failed!\r\n");
}
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int chrdevbase_release(struct inode *inode, struct file *filp)
{
printk("devbase release! \r\n");
return 0;
}
/*
* 设备操作函数结构体
*/
static struct file_operations devbase_fops = {
.owner = THIS_MODULE,
.open = chrdevbase_open,
.read = chrdevbase_read,
.write = chrdevbase_write,
.release = chrdevbase_release,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 0 成功;其他 失败
*/
static int __init chrdevbase_init(void)
{
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME, &devbase_fops);
if(retvalue < 0){
printk("chrdevbase driver register failed\r\n");
}
printk("chrdevbase init!\r\n");
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit chrdevbase_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME);
printk("chrdevbase exit!\r\n");
}
/*
* 将上面两个函数指定为驱动的入口和出口函数
*/
module_init(chrdevbase_init);
module_exit(chrdevbase_exit);
/*
* LICENSE和作者信息
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("JozenLee");
新字符驱动代码(以LED为例)
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define NEWCHRLED_CNT 1 /* 设备号个数 */
#define NEWCHRLED_NAME "newchrled" /* 名字 */
#define LEDOFF 0 /* 关灯 */
#define LEDON 1 /* 开灯 */
/* 寄存器物理地址 */
#define PERIPH_BASE (0x40000000)
#define MPU_AHB4_PERIPH_BASE (PERIPH_BASE + 0x10000000)
#define RCC_BASE (MPU_AHB4_PERIPH_BASE + 0x0000)
#define RCC_MP_AHB4ENSETR (RCC_BASE + 0XA28)
#define GPIOI_BASE (MPU_AHB4_PERIPH_BASE + 0xA000)
#define GPIOI_MODER (GPIOI_BASE + 0x0000)
#define GPIOI_OTYPER (GPIOI_BASE + 0x0004)
#define GPIOI_OSPEEDR (GPIOI_BASE + 0x0008)
#define GPIOI_PUPDR (GPIOI_BASE + 0x000C)
#define GPIOI_BSRR (GPIOI_BASE + 0x0018)
/* 映射后的寄存器虚拟地址指针 */
static void __iomem *MPU_AHB4_PERIPH_RCC_PI;
static void __iomem *GPIOI_MODER_PI;
static void __iomem *GPIOI_OTYPER_PI;
static void __iomem *GPIOI_OSPEEDR_PI;
static void __iomem *GPIOI_PUPDR_PI;
static void __iomem *GPIOI_BSRR_PI;
/* newchrled设备结构体 */
struct newchrled_dev{
dev_t devid; /* 设备号 */
struct cdev cdev; /* cdev */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
};
struct newchrled_dev newchrled; /* led设备 */
/*
* @description : LED打开/关闭
* @param - sta : LEDON(0) 打开LED,LEDOFF(1) 关闭LED
* @return : 无
*/
void led_switch(u8 sta)
{
u32 val = 0;
if(sta == LEDON) {
val = readl(GPIOI_BSRR_PI);
val |= (1 << 16);
writel(val, GPIOI_BSRR_PI);
}else if(sta == LEDOFF) {
val = readl(GPIOI_BSRR_PI);
val|= (1 << 0);
writel(val, GPIOI_BSRR_PI);
}
}
/*
* @description : 取消映射
* @return : 无
*/
void led_unmap(void)
{
/* 取消映射 */
iounmap(MPU_AHB4_PERIPH_RCC_PI);
iounmap(GPIOI_MODER_PI);
iounmap(GPIOI_OTYPER_PI);
iounmap(GPIOI_OSPEEDR_PI);
iounmap(GPIOI_PUPDR_PI);
iounmap(GPIOI_BSRR_PI);
}
/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int led_open(struct inode *inode, struct file *filp)
{
filp->private_data = &newchrled; /* 设置私有数据 */
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue;
unsigned char databuf[1];
unsigned char ledstat;
retvalue = copy_from_user(databuf, buf, cnt);
if(retvalue < 0) {
printk("kernel write failed!\r\n");
return -EFAULT;
}
ledstat = databuf[0]; /* 获取状态值 */
if(ledstat == LEDON) {
led_switch(LEDON); /* 打开LED灯 */
} else if(ledstat == LEDOFF) {
led_switch(LEDOFF); /* 关闭LED灯 */
}
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
return 0;
}
/* 设备操作函数 */
static struct file_operations newchrled_fops = {
.owner = THIS_MODULE,
.open = led_open,
.read = led_read,
.write = led_write,
.release = led_release,
};
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static int __init led_init(void)
{
u32 val = 0;
int ret;
/* 初始化LED */
/* 1、寄存器地址映射 */
MPU_AHB4_PERIPH_RCC_PI = ioremap(RCC_MP_AHB4ENSETR, 4);
GPIOI_MODER_PI = ioremap(GPIOI_MODER, 4);
GPIOI_OTYPER_PI = ioremap(GPIOI_OTYPER, 4);
GPIOI_OSPEEDR_PI = ioremap(GPIOI_OSPEEDR, 4);
GPIOI_PUPDR_PI = ioremap(GPIOI_PUPDR, 4);
GPIOI_BSRR_PI = ioremap(GPIOI_BSRR, 4);
/* 2、使能PI时钟 */
val = readl(MPU_AHB4_PERIPH_RCC_PI);
val &= ~(0X1 << 8); /* 清除以前的设置 */
val |= (0X1 << 8); /* 设置新值 */
writel(val, MPU_AHB4_PERIPH_RCC_PI);
/* 3、设置PI0通用的输出模式。*/
val = readl(GPIOI_MODER_PI);
val &= ~(0X3 << 0); /* bit0:1清零 */
val |= (0X1 << 0); /* bit0:1设置01 */
writel(val, GPIOI_MODER_PI);
/* 3、设置PI0为推挽模式。*/
val = readl(GPIOI_OTYPER_PI);
val &= ~(0X1 << 0); /* bit0清零,设置为上拉*/
writel(val, GPIOI_OTYPER_PI);
/* 4、设置PI0为高速。*/
val = readl(GPIOI_OSPEEDR_PI);
val &= ~(0X3 << 0); /* bit0:1 清零 */
val |= (0x2 << 0); /* bit0:1 设置为10*/
writel(val, GPIOI_OSPEEDR_PI);
/* 5、设置PI0为上拉。*/
val = readl(GPIOI_PUPDR_PI);
val &= ~(0X3 << 0); /* bit0:1 清零*/
val |= (0x1 << 0); /*bit0:1 设置为01*/
writel(val,GPIOI_PUPDR_PI);
/* 6、默认关闭LED */
val = readl(GPIOI_BSRR_PI);
val |= (0x1 << 0);
writel(val, GPIOI_BSRR_PI);
/* 注册字符设备驱动 */
/* 1、创建设备号 */
if (newchrled.major) { /* 定义了设备号 */
newchrled.devid = MKDEV(newchrled.major, 0);
ret = register_chrdev_region(newchrled.devid, NEWCHRLED_CNT, NEWCHRLED_NAME);
if(ret < 0) {
pr_err("cannot register %s char driver [ret=%d]\n",NEWCHRLED_NAME, NEWCHRLED_CNT);
goto fail_map;
}
} else { /* 没有定义设备号 */
ret = alloc_chrdev_region(&newchrled.devid, 0, NEWCHRLED_CNT, NEWCHRLED_NAME); /* 申请设备号 */
if(ret < 0) {
pr_err("%s Couldn't alloc_chrdev_region, ret=%d\r\n", NEWCHRLED_NAME, ret);
goto fail_map;
}
newchrled.major = MAJOR(newchrled.devid); /* 获取分配号的主设备号 */
newchrled.minor = MINOR(newchrled.devid); /* 获取分配号的次设备号 */
}
printk("newcheled major=%d,minor=%d\r\n",newchrled.major, newchrled.minor);
/* 2、初始化cdev */
newchrled.cdev.owner = THIS_MODULE;
cdev_init(&newchrled.cdev, &newchrled_fops);
/* 3、添加一个cdev */
ret = cdev_add(&newchrled.cdev, newchrled.devid, NEWCHRLED_CNT);
if(ret < 0)
goto del_unregister;
/* 4、创建类 */
newchrled.class = class_create(THIS_MODULE, NEWCHRLED_NAME);
if (IS_ERR(newchrled.class)) {
goto del_cdev;
}
/* 5、创建设备 */
newchrled.device = device_create(newchrled.class, NULL, newchrled.devid, NULL, NEWCHRLED_NAME);
if (IS_ERR(newchrled.device)) {
goto destroy_class;
}
return 0;
destroy_class:
class_destroy(newchrled.class);
del_cdev:
cdev_del(&newchrled.cdev);
del_unregister:
unregister_chrdev_region(newchrled.devid, NEWCHRLED_CNT);
fail_map:
led_unmap();
return -EIO;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit led_exit(void)
{
/* 取消映射 */
led_unmap();
/* 注销字符设备驱动 */
cdev_del(&newchrled.cdev);/* 删除cdev */
unregister_chrdev_region(newchrled.devid, NEWCHRLED_CNT); /* 注销设备号 */
device_destroy(newchrled.class, newchrled.devid);
class_destroy(newchrled.class);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("ALIENTEK");
MODULE_INFO(intree, "Y");
设备应用
#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
/* 用户数据, 用于写入设备测试 */
static char usrdata[] = {"usr data!"};
int main(int argc, char *argv[])
{
int fd, retvalue;
char *filename;
char readbuf[100], writebuf[100];
if(argc != 3){
printf("Error Usage!\r\n");
return -1;
}
filename = argv[1];
/* 打开驱动文件 */
fd = open(filename, O_RDWR);
if(fd < 0){
printf("Can't open file %s\r\n", filename);
return -1;
}
/* 从驱动文件读取数据测试 */
if(atoi(argv[2]) == 1){
retvalue = read(fd, readbuf, 50);
if(retvalue < 0){
printf("read file %s failed!\r\n", filename);
}else{
printf("read data:%s\r\n",readbuf);
}
}
/* 向设备驱动写数据测试 */
if(atoi(argv[2]) == 2){
memcpy(writebuf, usrdata, sizeof(usrdata));
retvalue = write(fd, writebuf, 50);
if(retvalue < 0){
printf("write file %s failed!\r\n", filename);
}
}
/* 关闭设备 */
retvalue = close(fd);
if(retvalue < 0){
printf("Can't close file %s\r\n", filename);
return -1;
}
return 0;
}
编译
将以下内容写入MakeFile
KERNELDIR := /home/zuozhongkai/linux/atk-mp1/linux/my_linux/linux-5.4.31 #Linux内核路径
CURRENT_PATH := $(shell pwd)
obj-m := newchrled.o #要跟设备驱动代码文件名称一致
build: kernel_modules
kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean
编译驱动
make -j16
编译应用文件
arm-none-linux-gnueabihf-gcc xxx.c -o xxx #xxx为应用代码文件名
将编译所得的库文件(如led.ko)和应用文件(如ledApp)放至arm的根目录下,即可在开发板中使用。
代码运行
进入到上述文件所在的目录
depmod # 第一次加载模块时需运行
modprobe led # 加载驱动模块
./ledApp /dev/newchrled 1 # 执行应用代码
pinctrl和gpio子系统
pinctrl
作用:根据所提供的信息配置PIN功能
pinctrl: pin-controller@50002000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32mp157-pinctrl";
ranges = <0 0x50002000 0xa400>;
interrupt-parent = <&exti>;
st,syscfg = <&exti 0x60 0xff>;
hwlocks = <&hsem 0 1>;
pins-are-numbered;
......
};
pinctrl下需要有子节点,子节点中有pins节点,以配置特定的PIN属性
&pinctrl {
......
m_can1_pins_a: m-can1-0 {
pins1 {
pinmux = <STM32_PINMUX('H', 13, AF9)>; /* CAN1_TX */
slew-rate = <1>;
drive-push-pull;
bias-disable;
};
pins2 {
pinmux = <STM32_PINMUX('I', 9, AF9)>; /* CAN1_RX */
bias-disable;
};
};
};
pins属性
- pinmux 属性
pinmux = <STM32_PINMUX(port, line, mode)>;
#例
pinmux = <STM32_PINMUX('H', 13, AF9)>;
port:表示用那一组 GPIO(例:H 表示为 GPIO 第 H 组,也就是 GPIOH)
line:表示这组 GPIO 的第几个引脚(例:13 表示为 GPIOH_13,也就是 PH13)
mode:表示当前引脚要做那种复用功能(例:AF9 表示为用第 9 个复用功能)
- 电气属性配置
gpio子系统
作用:用于初始化 GPIO 并且提供相应的 API 函数,比如设置 GPIO为输入输出,读取 GPIO 的值等。
创建节点
led {
compatible = "atk,led";
gpio = <&gpioi 0 GPIO_ACTIVE_LOW>;
status = "okay";
};
API函数
int gpio_request(unsigned gpio, const char *label) // 申请GPIO管脚
void gpio_free(unsigned gpio) // 释放GPIO
int gpio_direction_input(unsigned gpio) // 设置GPIO为输入
int gpio_direction_output(unsigned gpio, int value) // 设置GPIO为输出
int __gpio_get_value(unsigned gpio) // 获取GPIO当前值
void __gpio_set_value(unsigned gpio, int value) // 设定GPIO当前值
of_gpio_named_count:用于获取设备树某个属性里面定义了几个 GPIO 信息
int of_gpio_named_count(struct device_node *np,
const char *propname)
of_gpio_count:和 of_gpio_named_count 函数一样,但是不同的地方在于,此函数统计的是“gpios”这个属性的 GPIO 数量,而 of_gpio_named_count 函数可以统计任意属性的 GPIO 信息
int of_gpio_count(struct device_node *np)
of_get_named_gpio:获取 GPIO 编号
int of_get_named_gpio(struct device_node *np,
const char *propname,
int index)