import cv2
import numpy as np
import os
import glob
# 数据增强函数
def augment_data(img):
rows,cols,_ = img.shape
# 水平翻转图像
if np.random.random() > 0.5:
img = cv2.flip(img, 1)
img_name = os.path.splitext(save_path)[0] + "_flip.png"
cv2.imwrite(img_name, img)
print("Saved augmented image:", img_name)
# 随机缩放图像
scale = np.random.uniform(0.9, 1.1)
M = cv2.getRotationMatrix2D((cols/2, rows/2), 0, scale)
img_transformed = cv2.warpAffine(img, M, (cols, rows))
img_name = os.path.splitext(save_path)[0] + "_transform.png"
cv2.imwrite(img_name, img_transformed)
print("Saved augmented image:", img_name)
# 随机旋转图像
angle = np.random.randint(-10, 10)
M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)
img_rotated = cv2.warpAffine(img, M, (cols, rows))
img_name = os.path.splitext(save_path)[0] + "_rotated.png"
cv2.imwrite(img_name, img_rotated)
print("Saved augmented image:", img_name)
# 添加高斯噪音
mean = 0
std = np.random.uniform(5, 15)
noise = np.zeros(img.shape, np.float32)
cv2.randn(noise, mean, std)
noise = np.uint8(noise)
img_noisy = cv2.add(img, noise)
img_name = os.path.splitext(save_path)[0] + "_noisy.png"
cv2.imwrite(img_name, img_noisy)
print("Saved augmented image:", img_name)
# 随机调整对比度和亮度
alpha = np.random.uniform(0.8, 1.2)
beta = np.random.randint(-10, 10)
img_contrast = cv2.convertScaleAbs(img, alpha=alpha, beta=beta)
img_name = os.path.splitext(save_path)[0] + "_contrast.png"
cv2.imwrite(img_name, img_contrast)
print("Saved augmented image:", img_name)
return img
# 读取 data 文件夹中的所有图片,并进行数据增强
data_dir = "data"
save_dir = "result"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 使用 glob 库来遍历 data 文件夹中所有图像
for img_path in glob.glob(os.path.join(data_dir, "*.png")):
img = cv2.imread(img_path)
# 获取保存增强后的图片文件名
img_name = os.path.basename(img_path)
save_path = os.path.join(save_dir, img_name)
# 数据增强
augment_data(img)
# 保存原始图片
cv2.imwrite(save_path, img)
print("Saved original image:", save_path)
XML格式数据集转TXT(YOLO)_xml转txt-优快云博客
yolov8-制作数据集,数据集格式转换(yolo格式-voc格式)附完整代码_yolov8数据集格式-优快云博客
yolo图像检测数据集格式转换:xml 与 txt格式相互转换_yolo .csv文件转.xml文件-优快云博客
import os
import xml.etree.ElementTree as ET
# 定义类别列表
classes = ["crack", "porosity", "normal"] # 根据您的数据集进行修改
# 输入和输出文件夹路径
xml_folder = "F:/train/Annotations"
txt_folder = "F:/train/labels"
os.makedirs(txt_folder, exist_ok=True)
# 解析XML文件并转换为YOLO格式
for xml_file in os.listdir(xml_folder):
if xml_file.endswith(".xml"):
# 解析XML
tree = ET.parse(os.path.join(xml_folder, xml_file))
root = tree.getroot()
txt_file_path = os.path.join(txt_folder, os.path.splitext(xml_file)[0] + ".txt")
with open(txt_file_path, "w") as txt_file:
for obj in root.findall("object"):
# 提取类别、边界框信息
class_name = obj.find("name").text
if class_name not in classes:
continue
class_id = classes.index(class_name)
bbox = obj.find("bndbox")
xmin = int(bbox.find("xmin").text)
ymin = int(bbox.find("ymin").text)
xmax = int(bbox.find("xmax").text)
ymax = int(bbox.find("ymax").text)
# 计算边界框中心点和宽高
width = xmax - xmin
height = ymax - ymin
x_center = (xmin + xmax) / 2
y_center = (ymin + ymax) / 2
# 归一化坐标
img_width = int(root.find("size").find("width").text)
img_height = int(root.find("size").find("height").text)
x_center /= img_width
y_center /= img_height
width /= img_width
height /= img_height
# 写入TXT文件
txt_file.write(f"{class_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")
print("转换完成!")