【卫星影像三维重建-全流程代码实现】点云Mesh重构

本文介绍了如何使用Delaunay三角剖分方法,从卫星影像生成的三维点云进行表面重建,生成Mesh网格。在特定的建筑物点云场景下,这种方法能保持建筑物立面垂直和屋顶的棱角。实验效果表明,对于高建筑,Delaunay三角剖分表现出色,但低矮建筑的效果有待提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

1.1 背景

(1)本文主要内容是将三维点云(离散的三维点)进行表面重建生成Mesh网格,之前有篇关于开源软件-Cars-Mesh使用,它是对开源软件-Cars使用生成的点云进行处理得到Mesh网格结构,由于使用cars-mesh需要的配置文件较多,深入其内部涉及到点云mesh构建部分,得出如下结论:

cars-mesh主要有三种mesh构建方法:

  1. 泊松表面重建(poisson_reconstruction)
  2. Delaunay 三角剖分(delaunay_2d_reconstruction)
  3. ball_pivoting_reconstruction

此外还有移动立方体(Marching Cubes Algorithm)、贪婪投影三角化(Greedy Triangulation)等方法。

(2)由于基于卫星影像生成的建筑物点云往往只有建筑物屋顶点云,建筑物立面几乎没有点云,因此充分考虑这种特点,选取了Delaunay三角剖分的方法进行重建,能够保持建筑物立面垂直以及屋顶有棱有角。

1.2 效果示意

如下效果是在meshlab中呈现的:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 算法实现

2.1 依赖库

本算法依赖三维点云处理库open3d以及在二维上进行三角剖分的Delaunay实现函数,这里在scipy和matplotlib均有实现,本文选择了scipy中的。

2.2 实验数据

vertices.ply,其只包含点的xyz信息,点云对应的颜色无。实验数据见资源绑定,包含原始点云和mesh构建后的数据,效果在cloudcompare中按照高程渲染效果如下:
在这里插入图片描述

2.3 代码实现

import open3d as o3d
import numpy as np
from scipy.spatial import Delaunay
import matplotlib.tri as mtri

class Mesh:
    def __init__(self,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值