文章目录
- SOTA
- 2D 检测
- 单目3d检测
- 3d bev cam范式
-
- 1 Transformer attention is all you need 2017
- 2 ViT vision transformer ICLR 2021google
- 3 swin transformer 2021 ICCV bestpaper MS
- 4 DETR 2020 decoder set match
- 4 Deformabel DETR (deformabel convolution)
- 5 DETR3D 2021
- 6 PETR 2022
- 7 bevformer
- LSS
- bevdet
- caddn
- 指标 mAP NDS
- 标注:基于点云(sam自动精度差),基于nerf (生成的数据集质量差一些)
SOTA
(指标 3D mAP, NDS,分割 mIOU)
可以查看nscenes 官网
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera
https://www.aizyt88.com/2135.html
wx72156@126.com
Wx0912…
2D 检测
Anchor-based方案
Two-stage Detectors
RCNN
Fast RCNN
Faster RCNN
One-stage Detectors
SSD
YOLO
Anchor-free方案
FCOS
CenterNet
Transformer方案:DETR
单目3d检测
先验几何信息
自动标注: 基于sam,点云投影到图像获取点云分割 label,生成3Dboxes
3d bev cam范式
核心:视角转换
流派:
MLP: VPN,PON
LSS:BEVDET,BEVDET4D,bevdepth
Transformer: (DETR2d延伸)DETR3D, BEVFORMER, PETR, PETRV2
1 Transformer attention is all you need 2017
Transformer中selfatt和muitlhead-att
感受野大:全局交互,
位置编码:与全局交互,顺序改变自己本身attention 输出向量不受影响,这是不对的,因此要位置向量加入input
多头atten: q,k,v 进行分组,一组为一个head,然后输出 concat, 然后 输出 * Wo 得到输出
Multi-Head的优势在哪儿呢?如下图所示,绿色的部分是一个head的query和key,而红色部分则是另一个head的query和key,我们可以看出来,红色head更关注全局信息,绿色head更关注局部信息,Multi-Head的存在其实就是是的网络更加充分地利用了输入的信息:
FEED FORWARD 必要性解释,非线性映射,激活更重要的特征
- 而在Multi-Head Attention层之后还添加了一层Feed Forward层。Feed Forward层是一个两层的fully-connection层,中间隐藏层的单元个数为d_ff = 2048。这里在学习到representation之后,还要再加入一个Feed Forward的作用我的想法是:
注意到在Multi-Head Attention的内部结构中,我们进行的主要都是矩阵乘法(scaled Dot-Product Attention),即进行的都是线性变换。而线性变换的学习能力是不如非线性变化的强的,所以Multi-Head Attention的输出尽管利用了Attention机制,学习到了每个word的新representation表达,但是这种representation的表达能力可能并不强,我们仍然希望可以通过激活函数的方式,来强化representation的表达能力。比如context:The animal didn’t cross the road because it was too tired,利用激活函数,我们希望使得通过Attention层计算出的representation中,单词"it"的representation中,数值较大的部分则进行加强,数值较小的部分则进行抑制,从而使得相关的部分表达效果更好。(这也是神经网络中激活函数的作用,即进行非线性映射,加强大的部分,抑制小的部分)。我觉得这也是为什么在Attention层后加了一个Layer Normalizaiton层,通过对representation进行标准化处理,将数据移动到激活函数的作用区域,可以使得ReLU激活函数更好的发挥作用。同时在fully-connection中,先将数据映射到高维空间再映射到低维空间的过程,可以学习到更加抽象的特征,即该Feed Forward层使得单词的representation的表达能力更强,更加能够表示单词与context中其他单词之间的作用关系。
2 ViT vision transformer ICLR 2021google
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
感受野大:patch 和 patch之间 进行全局交互,提取得到 监督信号注意力集中的