收银员现有 n 张面值分别为 v1,v2,…,vn 的纸币。若找零金额为 m,则一共有多少种找零方法?
注:0<n≤1000,0<v1,v2,…,vn≤10000,0<m≤10000
输入格式
n v1,v2,…,vn m
输出格式
若有解,则输出全部找零方案,每输出一种 若无解,则输出“None”
输入样例1
6
3 1 4 3 2 7
9
输出样例1
3 1 3 2
3 4 2
4 3 2
2 7
输入样例2
5
5 3 4 6 7
2
输出样例2
None
解法一:
#include <iostream>
#include <algorithm>
using namespace std;
//典型回溯 dfs
int m, n, n_num, sum = 0, v[1024], book[1024] = {0};//p记录状态
void println()
{
int flag = false;
for(int i = 1; i <= n; ++i)
{
if(book[i])
{
if(flag) putchar(' ');
printf("%d", v[i]);
flag = true;
}
}
putchar('\n');
++sum;
}
void Solveways(int i)
{
if(n_num < m)
{
while(i <= n)
{
if(!book[i])
{
book[i] = 1;
n_num += v[i];
Solveways(i + 1);
book[i] = 0;
n_num -= v[i];
}
++i;
}
}
else if(n_num == m) println();
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &v[i]);
scanf("%d", &m);
Solveways(1);
if(sum == 0) printf("None\n");
return 0;
}
解法二(组合 + 剪枝):
#include <iostream>
#include <algorithm>
using namespace std;
int m, n, n_num, sum = 0, v[1024], x[1024] = {0};//p记录状态
int sums = 0, lefts = 0;
// 满二叉树
// 剪枝函数就是为了避免不必要的重复运算
int Prune(int i, int k)
{
if(i == 0) if(sums + v[k] > m) return 0;
if(i == 1) if(sums + lefts - v[k] < m) return 0;
return 1;
}
int Sum()
{
int sum = 0;
for(int i = 1; i <= n; ++i) if(x[i] == 0) sum += v[i];
return sum;
}
void OutPut()
{
int i, j;
for(i = 1; i <= n; ++i)
if(x[i] == 0)
{
printf("%d", v[i]);
break;
}
for(j = i + 1; j <= n; ++j) if(x[j] == 0) printf(" %d", v[j]);
putchar('\n');
++sum;
}
void Solveways(int k)
{
if(k > n)
{
if(Sum() == m) OutPut();
return ;
}
for(int i = 0; i <= 1; ++i)// 无剪枝
if(Prune(i, k))
{
if(i == 0) sums += v[k];
lefts -= v[k];
x[k] = i;
Solveways(k + 1);
if(i == 0) sums -= v[k];
lefts += v[k];
}
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", &v[i]);
scanf("%d", &m);
for(int i = 1; i <= n; ++i) lefts += v[i];
Solveways(1);
if(sum == 0) printf("None\n");
return 0;
}
/*
6
3 1 4 3 2 7
9
*/