dockers安装和Nvidia-docker安装
获取镜像
找到一个合适的dockers
https://hub.docker.com/r/jimmyli/faster-rcnn-gpu
Dockerfile 修改sources.list源
docker pull jimmyli/faster-rcnn-gpu
镜像创建好了之后在用docker run命令建立容器
创建容器
这是docker hub上写的方法,是有问题的,因为英伟达docker改版了
sudo nvidia-docker run --rm -it jimmyli/faster-rcnn-gpu /bin/bash
要改成
docker run --gpus all --shm-size 16g -v $(pwd)/sharedfolder:/code_current -v /data/:/data/ -p 6006:6006 -t -i jimmyli/faster-rcnn-gpu /bin/bash
安装Faster RCNN
https://github.com/rbgirshick/py-faster-rcnn
# 训练自Pascal VOC Dataset的模型
cd /workspace/py-faster-rcnn/tools/ python demo.py
# 训练自COCO的模型
python demo_coco.py
改编demo
改进demo函数,实现:
- 在data/demo文件夹下放如图片就可以运行,运行结果放入tools/demo_results。
- 可选择是否输出画框的图片使用命令–draw
- 输出json结果在tools/demo_results
def demo(net, image_name, args):
"""Detect object classes in an image using pre-computed object proposals."""
all_data = []
thresh = 0.5
# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])
# Visualize detections for each class
CONF_THRESH = 0.8
NMS_THRESH = 0.3
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
inds = np.where(dets[:, -1] >= thresh)[0] # 选框置信度大于0.5的才导入数据
if len(inds) != 0:
json_data = {'dets': str(dets), 'image_name': image_name, 'class': cls}
all_data.append(json_data)
if args.draw_boxes:
vis_detections(im, cls, dets, image_name, thresh=CONF_THRESH)
return all_data
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Faster R-CNN demo')
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--cpu', dest='cpu_mode',
help='Use CPU mode (overrides --gpu)',
action='store_true')
parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
choices=NETS.keys(), default='vgg16')
parser.add_argument('--draw', dest='draw_boxes', help='Draw detected bounding boxes yes or no',
action='store_true',
default=False) # 增加选项,是否输出画框后的图像
args = parser.parse_args()
return args
# 开头加入下面代码,用来显示中文
# -*- coding: UTF-8 -*-
# 改进MAIN下面的代码
if __name__ == '__main__':
cfg.TEST.HAS_RPN = True # Use RPN for proposals
args = parse_args()
prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
NETS[args.demo_net][1])
if not os.path.isfile(caffemodel):
raise IOError(('{:s} not found.\nDid you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel))
if args.cpu_mode:
caffe.set_mode_cpu()
else:
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
print('\n\nLoaded network {:s}'.format(caffemodel))
# Warmup on a dummy image
im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
for i in xrange(2):
_, _ = im_detect(net, im)
print(cfg.DATA_DIR+'/demo')
# 改进为可以直接在py-faster-rcnn/data/demo下放入想要检测的图片,运行结果在py-faster-rcnn/tools/demo_results下
images_dir = os.listdir(cfg.DATA_DIR + '/demo')
count = 0
start_time = time.time()
for images_name in images_dir:
count += 1
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
print('第', count,'张', 'Demo for data/demo/{}'.format(images_name))
demo(net, images_name)
current_time = time.time()
sum_time = datetime.timedelta(seconds=current_time - start_time )
print('总时间:', sum_time) # 运行总时长
#plt.show()
#plt.figure().savefig('demo.png')