1007 Maximum Subsequence Sum(记忆化搜索,动态规划)

含泪补基础

1007 Maximum Subsequence Sum

1. 题目描述

Given a sequence of K integers { N​1​​ , N​2​​ , …, N​K​​ }. A continuous subsequence is defined to be { N​i​​ ,
​i+1​​ , …, N​j​​ } where 1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

题目大意: 求最大连续子序列和,输出最大的和以及这个子序列的开始值和结束值。如果所有数都小于0,那么认为最大的和为0,并且输出首尾元素~

Input Specification:
Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤10000). The second line contains K numbers, separated by a space.

Output Specification:
For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.
在这里插入图片描述

2. 解题思路

  • 这题是动态规划的思想。我们需要求最大的连续子列和,那么我们从最简单的开始。
    假设输入的n个数存在nums[n] 中,以第n个数结尾的最大连续子列存在dp[n]中,对应的连续子列的初始位置存在site[n]中。那么以第0个数结尾的最大连续子列和就是nums[0]本身,即dp[0]=nums[0]。计算以第1个数结尾的最大连续子列和,我们需要判断nums[1]大还是nums[1]+dp[0]。
  • 这样,我们就可以推导出,逐一更新dp[n]的值时,只需要判断nums[n]和nums[n]+dp[n-1]。而更新每个子列的初始位置,只需要site[n]=site[n-1]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simone Zeng

给作者来杯咖啡吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值