题目
题意:给定长度为
n
(
1
<
=
n
<
=
5000
)
n(1<=n<=5000)
n(1<=n<=5000)的数组
a
a
a和数
x
x
x,
−
1
0
5
<
=
a
i
<
=
1
0
5
-10^5<=a_i<=10^5
−105<=ai<=105。现在定义f(k)表示从数组
a
a
a中选取
k
k
k个不同的元素,分别加上x后,能得到的最大连续子区间和。
求
f
(
k
)
,
0
<
=
k
<
=
n
f(k),0<=k<=n
f(k),0<=k<=n
思路: f ( 0 ) f(0) f(0)则是裸的最大连续子区间问题。现在要求给k个元素添加后的,最大连续子区间。注意n的范围是5000,我们考虑二维dp,定义 d p [ i ] [ y ] dp[i][y] dp[i][y]表示以i结尾的、给y个元素添加x后的最大连续数组和。则有转移方程
int v = max(dp[i-1][y], 0) + a[i];
int v2 = max(dp[i-1][y-1], 0) + a[i] + x;
dp[i][y] = max(v, v2);
其中v表示不给第i个元素加x的情况,v2表示给第i个元素加x的情况。特殊考虑下y为0的情况。
对于每个y,对应的答案为则为
a
n
s
[
y
]
=
m
a
x
(
d
p
[
i
]
[
y
]
)
,
1
<
=
i
<
=
n
ans[y]=max(dp[i][y]),1<=i<=n
ans[y]=max(dp[i][y]),1<=i<=n
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 5010;
const int mod = 1000000007;
int n, x, a[maxn];
int dp[maxn][maxn];
int ans[maxn];
void solve() {
scanf("%d%d", &n, &x);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
for (int i = 0; i <= n; ++i) {
ans[i] = 0;
for (int j = 0; j <= n; ++j) {
dp[i][j] = 0;
}
}
for (int i = 1; i <= n; ++i) {
dp[i][0] = max(dp[i-1][0], 0) + a[i];
ans[0] = max(ans[0], dp[i][0]);
for (int y = 1; y <= n; ++y) {
int v = max(dp[i-1][y], 0) + a[i];
int v2 = max(dp[i-1][y-1], 0) + a[i] + x;
dp[i][y] = max(v, v2);
ans[y] = max(ans[y], dp[i][y]);
}
}
for (int i = 0; i < n; ++i) {
printf("%d ", ans[i]);
}
printf("%d\n", ans[n]);
}
int main() {
int t;
scanf("%d", &t);
// t = 1;
while (t--) {
solve();
}
}