差分数组+例题:Pikachu

本文介绍了差分数组的概念、性质及其在区间加减操作和区间和查询问题中的应用。通过差分数组,可以高效地处理离线数列的问题,避免了对每个元素的逐一遍历,提升了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

…比赛遇到,我都不知道这是个啥…(太菜了太菜了)
一、差分数组的定义及用途
1.定义:
对于已知有n个元素的离线数列d,我们可以建立记录它每项与前一项差值的差分数组f:显然,f[1]=d[1]-0=d[1];对于整数i∈[2,n],我们让f[i]=d[i]-d[i-1]。
2.简单性质:
(1)计算数列各项的值:观察d[2]=f[1]+f[2]=d[1]+d[2]-d[1]=d[2]可知,数列第i项的值是可以用差分数组的前i项的和计算的,即d[i]=f[i]的前缀和。
(2)计算数列每一项的前缀和:第i项的前缀和即为数列前i项的和,那么推导可知
在这里插入图片描述
即可用差分数组求出数列前缀和;
3.用途:
(1)快速处理区间加减操作:
假如现在对数列中区间[L,R]上的数加上x,我们通过性质(1)知道,第一个受影响的差分数组中的元素为f[L],即令f[L]+=x,那么后面数列元素在计算过程中都会加上x;最后一个受影响的差分数组中的元素为f[R],所以令f[R+1]-=x,即可保证不会影响到R以后数列元素的计算。这样我们不必对区间内每一个数进行处理,只需处理两个差分后的数即可;
(2)询问区间和问题:
由性质(2)我们可以计算出数列各项的前缀和数组sum各项的值;那么显然,区间[L,R]的和即为ans=sum[R]-sum[L-1];

例题:
在这里插入图片描述

维护两个差分数组,逆序遍历,因为改变的都是之前的操作数

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<map>
#include<iterator>
#include<queue>
#include<vector>
#include<string>
using namespace std;

typedef long long ll;
const int N=1e6+10;
const long long INF=1e18;
const double eps
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值