[pytorch] 使用tensorboardX可视化训练过程

本文详细介绍如何使用TensorBoardX可视化PyTorch训练过程,包括安装步骤、使用方法及各类数据可视化技巧。

在训练神经网络时,我们希望能更直观地了解训练情况,包括损失曲线、输入图片、输出图片、卷积核的参数分布等信息。这些信息能帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的办法就是打印输出,但其只能打印数值信息,不够直观,同时无法查看分布、图片、声音等。接下来,将介绍两个深度学习中常用的可视化工具之一:Tensorboard

安装tensorboardX

安装非常简单,主要分为以下三步:

  1. 安装tensorflow

pip3 install tensorflow

  1. 安装tensorboard

pip3 install tensorboard

  1. 安装tensorboardX

pip3 install tensorboardX

我在安装的过程中,尝试了跳过了第二步(原因是很多网上的教程没有第二步),结果会报错,所以最好按照这三步进行安装。

使用tensorboardX

安装好以后在使用时,需要导入这个包:

from tensorboardX import SummaryWriter

创建writer实例

# Creates writer1 object.
# The log will be saved in 'runs/exp'
writer1 = SummaryWriter('runs/exp')

# Creates writer2 object with auto generated file name
# The log directory will be something like 'runs/Aug20-17-20-33'
writer2 = SummaryWriter()

# Creates writer3 object with auto generated file name, the comment will be appended to the filename.
# The log directory will be something like 'runs/Aug20-17-20-33-resnet'
writer3 = SummaryWriter(comment='resnet')

以上展示了三种不同的初始化方法,会使得生成的日志保存在不同的文件下面。

接下来,我们就可以调用 SummaryWriter 实例的各种 add_something 方法向日志中写入不同类型的数据了。想要在浏览器中查看可视化这些数据,只要在命令行中开启 tensorboard 即可:

tensorboard --logdir=<your_log_dir>

其中的 <your_log_dir> 既可以是单个 run 的路径,如上面 writer1 生成的 runs/exp;也可以是多个 run 的父目录,如 runs/ 下面可能会有很多的子文件夹,每个文件夹都代表了一次实验,我们令 --logdir=runs/ 就可以在 tensorboard 可视化界面中方便地横向比较 runs/ 下不同次实验所得数据的差异。

使用add方法添加记录

添加数字

使用add_scalar添加数字型记录:

add_scalar(tag, scalar_value, global_step=None, walltime
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值