[pytorch]model.children(), model.modules()和parameters()的区别和用法

本文详细介绍了PyTorch中children, modules和parameters三种方法的使用区别与场景。通过具体示例,展示了如何利用这些方法来遍历神经网络结构,并解释了它们在模型初始化、参数加载等方面的应用。

[pytorch]children,modules和parameters的区别和用法

children

children只获取最浅层的网络结构,相应的named_children则返回tuple的数据,tuple[0]是该层的名称,tuple[1]是相应的结构:

class Net4(torch.nn.Module):
    def __init__(self):
        super(Net4, self).__init__()
        self.conv = torch.nn.Sequential(
            OrderedDict(
                [
                    ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                    ("relu1", torch.nn.ReLU()),
                    ("pool1", torch.nn.MaxPool2d(2))
                ]
            ))

        self.dense = torch.nn.Sequential(
            OrderedDict([
                ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                ("relu2", torch.nn.ReLU()),
                ("dense2", torch.nn
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值