[PolarMask++](TPAMI. 2021)

PolarMask++是一种新颖的单次实例分割框架,它使用极坐标系统有效地预测实例掩模和旋转对象。通过极坐标表示,提出极IoU损失和软极中心性,改进了实例中心分类和密集坐标回归。实验证明,该方法在多个挑战性的基准测试中实现了同类最佳的性能,同时保持较低的计算开销。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

image-20210615101216497

1. Contribution

The main contributions of this work are three-fold:

  • We introduce a new perspective to design a single-shot instance segmentation framework, PolarMask, which predicts instance masks and rotated objects in the polar coordinate in an effective and efficient manner.
  • With the polar representation, we propose the polar IoU loss and the soft polar centerness for instance center classification and dense coordinate regression.
  • Rich experiments show that state-of-the-art performances of object instance segmentation and rotated object detection can be achieved with low computational overhead in multiple challenging benchmarks.

2. Method

The heads in PolarMask++ contain three branches, including a classification branch, a polar centerness branch, and a mask regression branch, which predict the class label, the polar centerness score and the length of each polar ray of each pixel respectively, where k and n indicate the number of categories and the number of rays.

image-20210615101717519

2.1 Overview of Mask Segmentation in Polar Coordinate

  • Polar Representation: n = 36,θ=10°\theta=10°θ=10°

  • Mass Center

    • We find that the mass center is more advantageous than the box center because the mass center has a larger probability of falling inside an instance compared to its box center. Although
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值